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Analytic Virtual Integration for 
Cyber-Physical Systems 

 
The goal of the Analytic Virtual Integration of Cyber-Physical Systems (AVICPS) 

workshop is to explore architecture design patterns, tools and the theoretical analytical 

foundations for creating common system-wide composition models where key properties can be 

studied and guarantees provided before the start of actual development. Of particular interest are 

the case studies on the challenges of expressing the properties of the final product in terms of 

component properties and the architecture that governs their interactions. Both solutions and/or 

open problems are welcome. 

 
This workshop focuses on analytical system composition technologies that include: 

 

1. System level schedulability optimization technologies that support the combinatory 

optimization of task allocation, I/O and network traffic routing 

2. A quantitative and early analysis of the system architecture performance in an end-to-end 

fashion, deriving perhaps even the worst/best/average case behavior for the entire platform 

and new hardware abstractions. In fact, existing task/system models reason at levels that are 

well abstracted away from real details of hardware components (e.g. multicores, memory 

architectures, I/O, network-on-chip, etc.). They also are unable to cope with workloads that 

are beyond the capabilities of traditional computational resources (e.g. video streams, weather 

data, GPS, etc.) 

3. Fault tolerance technologies against combined cyber faults and physical system disturbances 

4. Safety analysis such as model checking for mixed criticality CPS applications, for example, 

flight management systems and safe medical devices plug and play (MDPnP) 

5. Security protocol development and verification techniques for CPS applications 

6. Models for describing/quantifying the environments where such systems must operate 
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 9:00 -  9:10am Welcome and Kick-off 
 
 9:10 - 10:00am Keynote:  
Industry Perspectives on Complex System Integration Issues 
Dr. David A. Redman, Director of the Aerospace Vehicle Systems Institute (AVSI)  
 
10.30 – 11:00am Coffee break  
 
10:30 - 12:00pm: Session I 
FUSED: A Tool Integration Framework for Collaborative System Engineering 
Mark Boddy, Martin Michalowski, August Schwerdfeger, Hazel Shackleton and Steve Vestel 
(martin.michalowski@adventiumenterprises.com) 
 
 
A Design Framework for Model-based Development of Complex Systems 
Hristina Moneva, Roelof Hamberg and Teade Punter (hristina.moneva@esi.nl) 
 
 
Analytic Virtual Integration of Cyber-Physical Systems & AADL: Challenges, Threats and 
Opportunities 
Jerome Hugues (jerome.hugues@isae.fr) 
 
From Abstract Component Descriptions to Timed I/O-Interfaces in AUTOSAR 
Stefan Neumann and Sebastian Wätzoldt (stefan.neumann@hpi.uni-potsdam.de) 
 
12:30 -  2.00pm Lunch 
 
 2:00 -  3:30pm Session II 
Quantitative Fault Propagation Analysis for Networked Cyber-Physical Systems 
Linda Briesemeister, Grit Denker, Daniel Elenius, Ian Mason, Srivatsan Varadarajan, 
Brendan Hall, Devesh Bhatt, Gabor Madl and Wilfried Steiner (linda.briesemeister@sri.com) 
 
Integrating Sleep Scheduling and Compressed Sensing in Sensor Networks 
Debojit Dhar and Sathish Gopalakrishnan (sathish@ece.ubc.ca) 
 
Review and Challenges of Assumptions in Software Development 
Md Abdullah Al Mamun and Jörgen Hansson (jorgen.hansson@chalmers.se) 
 
A Criticality Decomposition Architecture to Integrate Encrypted Sensor Data in the Smart 
Grid 
Dionisio de Niz and Lutz Wrage (dionisio@sei.cmu.edu) 
 
3:00 - 3:30pm Workshop Ends. Coffee break  

 
4:00 – 5:00pm RTSS@Work Demonstrations and Welcome Reception 
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Dr.	  David	  A.	  Redman	  
	  

	  
	  
	  
	  
	  
	  

	  
Industry	  Perspectives	  on	  Complex	  System	  Integration	  Issues	  
	  

The	   Aerospace	   industry	   has	   encountered	   as	   aircraft	   integration	   is	   increasingly	  
dominated	   by	   the	   cost	   of	   software	   as	   its	   complexity	   and	   size	   have	   grown	  
exponentially.	  In	  an	  initiative	  called	  System	  Architecture	  Virtual	  Integration	  (SAVI)	  
the	  major	   players	   in	   this	   industry	   are	   investigating	   technical	   solutions	   for	   use	   in	  
next	  generation	  aircraft	  development.	  This	  talk	  discusses	  some	  of	  the	  key	  technical	  
issues	  they	  are	  facing.	  
	  
	  
	  
Biography:	  
Dave	  Redman	  is	  the	  Director	  of	  the	  Aerospace	  Vehicle	  Systems	  Institute	  (AVSI),	  a	  division	  of	  
the	   Texas	   Engineering	   Experiment	   Station	   and	   part	   of	   the	   Texas	  A&M	  University	   System.	  
AVSI	   is	   a	   global	   aerospace	   industry	   cooperative	   focused	   on	   addressing	   common	   issues	  
through	   collaboration	   between	   industry,	   government,	   and	   academia.	   Dr.	   Redman	   joined	  
AVSI	  in	  2008	  and	  has	  overseen	  the	  expansion	  of	  the	  organization	  to	  include	  European	  and	  
South	  American	  Members,	  the	  first	  commercialization	  of	  AVSI	  technology,	  and	  the	  launch	  of	  
several	  significant	  international	  projects.	  
	  
Dr.	   Redman	   received	   a	   Bachelor	   of	   Science	   in	   Electrical	   Engineering	   from	   Michigan	  
Technological	   University	   and	   a	   Masters	   and	   Ph.D.	   in	   Electrical	   Engineering	   from	   the	  
University	  of	  Michigan.	  Following	  a	  postdoc	  at	  Sandia	  National	  Labs,	  Dr.	  Redman	  performed	  
research	  in	  radiation	  effects	  in	  optoelectronics	  at	  the	  U.S.	  Air	  Force	  Philips	  Laboratory.	  
	  
Prior	   to	   joining	   AVSI,	   Dr.	   Redman	   spent	   seven	   years	   at	   GE	   Aviation,	   holding	   various	  
technology	   development	   positions.	   He	   led	   the	   development	   of	   a	   strategic	   road	   mapping	  
process	  and	  other	  internal	  research	  and	  technology	  process.	  Dave	  also	  held	  the	  position	  of	  
Chief	  Systems	  Engineer	   for	  Rotorcraft	  Products	  and	  served	  as	   the	   lead	  on	  a	  division-‐wide	  
model-‐based	   engineering	   initiative.	   Part	   of	   this	   initiative	  was	   contributing	   to	   and	   guiding	  
the	  GE	  participation	  on	  the	  AVSI	  SAVI	  project.	  



 viii 

Abstracts:  
 
1. FUSED: A Tool Integration Framework for Collaborative System Engineering 
Mark Boddy, Martin Michalowski, August Schwerdfeger, Hazel Shackleton and 
Steve Vestel (martin.michalowski@adventiumenterprises.com) 
 
FUSED is a tool integration framework that supports multiple engineers who are 
collaborating in the development of a diverse set of engineering models used for multiple 
purposes in multiple phases of development. FUSED is extensible to support a chosen 
set of modeling environments; a few examples from our work are requirements, solid 
geometry, computational fluid dynamics, dynamical systems, and vetronics/avionics. An 
extensible language approach is used, so that many FUSED capabilities are presented 
to domain experts as minor additions to familiar languages and tools. There is also a 
special FUSED language to specify compositions of models. Compositions may be used 
for multiple purposes, e.g., to specify multiple views of a component, verify inter-model 
consistency, specify part/whole assemblies, or apply design operations to models. One 
goal of FUSED is to reduce errors due to inconsistencies and emergent properties that 
occur across multiple models being developed by multiple domain-specific experts. For 
example, FUSED has an extensible typing and meta-typing system, and compositions 
may include powerful model verification environments. Another goal is improved support 
for concurrent, collaborative, mixed-initiative, evolutionary development processes. For 
example, FUSED was designed to support dependency tracking, change management 
and ripple effects analyses, version control and remote model server access, and mixed-
initiative and multi-disciplinary collaborative optimization. 
 
 
2. A Design Framework for Model-based Development of Complex Systems 
Hristina Moneva, Roelof Hamberg and Teade Punter (hristina.moneva@esi.nl) 
 
A Design Framework is presented that aims at capturing the design rationales in the 
process of designing embedded or cyber-physical systems. Its principal concepts cover 
storing the design rationales, which encompasses design decisions and analysis results, 
by linking design goals to concrete questions and analysis results for a particular scope 
of the system. The Design Framework does also provide a mechanism for using 
heterogeneous models for different system parts and linking them by means of essential 
design parameters and their dependencies. An elaborated conflict detection mechanism 
at different levels is provided in order to enable the designer to keep the design 
consistent throughout the process. The paper also presents first experiences in applying 
the prototype in industrial contexts. 
 
 
3. Analytic Virtual Integration of Cyber-Physical Systems and AADL: Challenges, 
Threats and Opportunities 
Jerome Hugues (jerome.hugues@isae.fr) 
 
The design and implementation of cyber-physical systems gather multiple domains, from 
low-level physics up to complex control of systems to implement a full function. Such 
complexity requires particular strategy to characterize each level of abstractions, and 
then integration to ensure the system under consideration is correctly built. The advent 
of Model-Based Engineering is often perceived as a silver bullet to achieve all these 
complex tasks: the system designer can master its design through proper model artifacts 
(blocks, connections, properties, ...), virtual integration of system blocks, and analysis. 
However, current MBE processes usually cover vertical analysis, and address only a few 
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aspects like scheduling or behavioral analysis, while CPS would require also horizontal 
analysis of the system, combining analysis results. In this position paper, we review 
experiments on the use of AADL to design CPS, and highlight challenges, threats and 
opportunities to support analytical virtual integration. 
 
 
4. From Abstract Component Descriptions to Timed I/O-Interfaces in AUTOSAR 
Stefan Neumann and Sebastian Wätzoldt (stefan.neumann@hpi.uni-potsdam.de) 
 
We present how based on a given AUTOSAR Software Component (SWC) a behavior 
model in form of a set of timed automata is derived. We show how abstraction is applied 
on the derived automaton model to create a timed interface that can be used for the 
purpose of compositional reasoning. When applying abstraction potentially information 
gets lost that is required for being able to distinguish between valid and invalid behavior. 
We introduce a methodical approach that allows finding out if the derived interface is 
expressive enough to exclude all invalid behavior of the SWC based on the derived 
interface. In the case that invalid behavior is not excluded by the interface, the process is 
able to generate example interactions with the SWC that lead to such an invalid 
behavior. 
	  
	  
5. Quantitative Fault Propagation Analysis for Networked Cyber-Physical Systems 
Linda Briesemeister, Grit Denker, Daniel Elenius, Ian Mason, Srivatsan Varadarajan, 
Brendan Hall, Devesh Bhatt, Gabor Madl and Wilfried Steiner 
(linda.briesemeister@sri.com) 
 
This paper presents an approach to analyzing a model of networked cyber-physical 
systems for fault propagation. We present an implementation of a probabilistic logic 
model, which allows for reasoning via symbolic evaluation as well as numeric evaluation 
to perform a quantitative fault analysis. Our models are built from a few building blocks, 
which can be instantiated as standard or high integrity; communication paths can be 
made redundant, and finally, whole subsystem blocks can be replicated. We assume an 
underlying networking infrastructure of TTEthernet, which allows traffic of time-triggered, 
rate-constrained, or best-effort modes with different safety features. We apply our 
approach to a case study of a brake-by-wire system that contains communication flows 
with different traffic modes according to their criticality. 
 
 
6. Integrating Sleep Scheduling and Compressed Sensing in Sensor Networks 
Debojit Dhar and Sathish Gopalakrishnan (sathish@ece.ubc.ca) 
 
We consider the interaction between the natural redundancy of sensor data for a variety 
of data gathering applications and the need for reducing energy consumption when such 
data is obtained through low-energy nodes communicating wirelessly. We employ 
compressed sensing as a mechanism for reducing the number of sensor nodes that 
need to be active at any given point in time for effective data reconstruction. 
Correspondingly we describe a decentralized coordination scheme that permits nodes to 
adjust their sleep and activity schedules subject to connectivity and coverage 
requirements that allow for satisfactory data reconstruction fidelity. Such problems are 
intractable and our schemes are approximation algorithms for minimizing the number of 
active nodes while adhering to the mentioned requirements. Our research contributions 
are two-fold: (i) we derive bounds on the performance of our coordination scheme and 
(ii) we evaluate the effectiveness of integrating compressed sensing with our 
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coordination scheme through simulations based on a data generation tool that models 
some physical phenomena. 
7. Review and Challenges of Assumptions in Software Development 
Md Abdullah Al Mamun and Jörgen Hansson (jorgen.hansson@chalmers.se) 
 
The problems of implicit and invalid assumptions have been identified as one of the key 
reasons to project and software failures. Assumptions are available in almost all aspects 
of the software development from human factors to different software development 
activities. They also have influence on software quality attributes. The aim of this article 
is to provide a review of the existing work in assumptions management and find out the 
assumptions related challenges that should be mitigated in order to build better systems. 
The results show that assumptions are concerned with many different areas of software 
engineering and the existing approaches suffer from the lack of scope of assumptions 
categories and some concerns that are impacted by the assumptions. We believe a 
holistic assumptions management approach can mitigate assumptions related 
challenges by integrating concerned areas and contribute to build systems with smooth 
software integration and evolution. 
 
 
8. A Criticality Decomposition Architecture to Integrate Encrypted Sensor Data in 
the Smart Grid 
Dionisio de Niz and Lutz Wrage (dionisio@sei.cmu.edu) 
 
In this paper we discuss the challenges that the integration of encryption protocols can 
impose on the scheduling of real-time systems in the smart grid. In order to address 
these challenges, we present a new task model and scheduling that takes advantage of 
the predictable bimodal nature of the execution of the tasks in the system. This nature 
allows us to use stream ciphers to decompose the computation of the encryption into 
two parts: a key stream pre-computation and a fast encryption computation using the 
key stream bits. This structure takes advantage of the fact that the trailing part of our 
bimodal task is not always executed (e.g., the actuation). When this happens we 
execute the keystream pre-computation to calculate and save values (key bits) to be 
used by the trailing part of the task in a future activation. We call this scheme 
computation buffering. The values produced during computation buffering reduce the 
execution time needed in the trailing part. Then we show how this scheme reduces both 
the utilization of the task (and the taskset) and the response time of the trailing part of 
the task. We then present the mapping of this task model to the multi-frame scheduling 
model and the modifications to the response time calculation. Throughout our discussion 
we use an example from the smart grid to illustrate both the challenges and the benefits 
of our solution. 
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FUSED: A Tool Integration Framework
for Collaborative System Engineering

Mark Boddy, Martin Michalowski, August Schwerdfeger, Hazel Shackleton, and Steve Vestal
Adventium Enterprises
Minneapolis, MN, USA

{mark.boddy,martin.michalowski,august.schwerdfeger,hazel.shackleton,steve.vestal}@adventiumenterprises.com

Abstract—FUSED is a tool integration framework that
supports multiple engineers who are collaborating in the
development of a diverse set of engineering models used for
multiple purposes in multiple phases of development. FUSED
is extensible to support a chosen set of modeling environments;
a few examples from our work are requirements, solid geom-
etry, computational fluid dynamics, dynamical systems, and
vetronics/avionics. An extensible language approach is used,
so that many FUSED capabilities are presented to domain
experts as minor additions to familiar languages and tools.
There is also a special FUSED language to specify compositions
of models. Compositions may be used for multiple purposes,
e.g., to specify multiple views of a component, verify inter-
model consistency, specify part/whole assemblies, or apply
design operations to models. One goal of FUSED is to reduce
errors due to inconsistencies and emergent properties that
occur across multiple models being developed by multiple
domain-specific experts. For example, FUSED has an exten-
sible typing and meta-typing system, and compositions may
include powerful model verification environments. Another
goal is improved support for concurrent, collaborative, mixed-
initiative, evolutionary development processes. For example,
FUSED was designed to support dependency tracking, change
management and ripple effects analyses, version control and
remote model server access, and mixed-initiative and multi-
disciplinary collaborative optimization.

Keywords-tool integration; system engineering; collaborative
development; extensible languages;

I. INTRODUCTION

We use the term “modeling environment” to mean a set of
languages used to model systems from particular viewpoints
plus a set of tools that automate associated engineering tasks.
Some examples (all freely available) are OpenModelica for
dynamical systems, BRL-CAD or Google SketchUp for
solid modeling, Athena Vortex Lattice for computational
fluid dynamics, TOPCASED for SysML requirements and
AADL vetronics/avionics models. A modeling environment
typically has a primary language for human entry and
a number of additional data representations. The primary

This work was supported by DARPA under the META program contract
# FA8650-10-C-7076. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or
the U.S. Government. Approved for Public Release, Distribution Unlimited.
Submitted 2nd Workshop on Analytic Virtual Integration of Cyber-Physical
Systems.

language could be a standardized textual language specified
by a formal grammar, but it may also be specified informally
by a GUI or API. Environments also include other represen-
tations, such as those generated by various model analysis
and simulation tools. Our tool integration framework, which
we call FUSED, has been designed so that it can be extended
to support any given set of modeling environments.

The FUSED framework provides additional capabilities to
specify compositions of diverse models, to script operations
on these compositions, and to support dependency tracking
and change management in a collaborative development
environment. Examples include a composition of solid and
dynamical models to capture different viewpoints of a com-
ponent; a composition of components into an assembly or
architecture; or a composition of a design optimizer with a
design.

Developers must be able to specify how these new capa-
bilities are to be applied. Our approach is to leverage existing
modeling environments as much as possible by applying
extensible language concepts. New FUSED capabilities are
provided to domain experts as minor extensions to familiar
languages. There is an additional, new FUSED language
for specifying compositions of models developed in other
modeling environments. This language deals with issues that
are inherently multi-model and multi-environment and is
primarily intended for system rather than domain-specific
engineering.

Our concept of model includes traditional design models
such as geometry models of aircraft wings and DAE models
of vehicle dynamics. It also encompasses what might be
called design process models, which are models that operate
on other models. Examples in this category are design
optimizers and trade space visualizers, model checkers and
verifiers, and uncertainty propagators and global sensitivity
analyzers. FUSED compositions can assemble parts into
assemblies; e.g., four wheels and a framework into a chassis.
They can also specify applications of process models to
design models; e.g., a composition of a design optimizer or
trade space visualizer with another composition of design
models.

Defining a semantics for a composition of models that
themselves have diverse and incommensurate semantics is a



challenge. For example, the extensive and intricate geometric
semantics defined for a solid modeling environment are at
best weakly reflected in logical languages found in vetronics
and avionics environments. Our approach is to combine
concepts found in classical type theory with concepts found
in theories of abstraction. The semantics of FUSED com-
positions are the abstractions of types found in the different
models, at a level of abstraction that is common across the
models.

We assume FUSED will be used in a development process
involving many developers who are concurrently modifying
models from many modeling environments. These models
may be used at different phases and exist at multiple levels of
abstraction, e.g., preliminary requirements through as-built
verification and validation (V&V). We assume models may
be stored in a mixture of version control systems or accessed
using a remote model server.

To ensure its utility in this kind of development, the
FUSED framework is extensible to support any selected
set of modeling environments and any selected set of ob-
ject types from those environments. For the design and
implementation of the FUSED framework itself, there are
a number of technologies from which to choose as a ba-
sis. The UML meta-language approach and its associated
representations and tools provide an obvious example [8].
Semantic web (web 3.0) concepts and representations are
another option. FUSED supports UML domain languages
like SysML and uses XML for tool data exchange, and the
framework is designed to support web/SOA-style interac-
tions such as compositions involving remote model servers,
but our primary implementation technologies are higher-
order attribute grammars and extensible language methods;
specifically, the Silver attribute grammar specification lan-
guage and code generation tools [2]. Silver, although based
around the paradigm of a parser generator, has the full power
of a functional programming language; attributes on syntax-
tree nodes in Silver may have values that are themselves full
syntax trees, and there are also formalisms and analyses for
the concise specification and seamless composition of sets
of language extensions, both on the syntactic and semantic
levels.

The following sections provide overviews and illustrative
usage scenarios for problems addressed, model composition
semantics, modeling environments and compositions, con-
current collaborative development, and the architecture and
implementation approach for the FUSED framework itself.

II. PROBLEMS ADDRESSED

Many errors occur due to inconsistencies between models
developed in different environments, and to misunderstand-
ings by engineers trained in different disciplines and focus-
ing on different issues. Because all models are abstractions,
they represent only aspects of the system, developed to deal
with particular sets of issues for particular purposes. There

are characteristics of a system (sometimes called emergent
properties) that are really captured only in sets of models.
We want to reduce errors that occur due to inconsistencies
between models or due to failure to consider interactions
between models. Section III discusses some FUSED features
that address these problems and presents an illustrative usage
scenario.

Development is a mixed-initiative process. Automated de-
sign tools are becoming increasingly common and powerful,
but these must ultimately be applied by human developers
and as such the human/machine interactions are becoming
increasingly complex. FUSED makes it easy for developers
to apply automated design aids to complex models to support
complex, mixed-initiative development activities.

Additionally, development processes are becoming in-
creasingly collaborative, concurrent, and distributed. The
waterfall model is being supplanted by processes in which
product lines undergo continuous evolution throughout their
life cycle. Advanced multi-disciplinary system engineering
frameworks need to be well-integrated with supporting pro-
cesses like distributed revision control, collaborative model
development, and change management. FUSED integrates
with advanced process support tooling to create an overall
environment in which developers can stand on each other’s
shoulders instead of each other’s toes. Section V discusses
some FUSED features that address these issues and presents
an illustrative usage scenario.

III. COMPOSITION SEMANTICS

Our definition of “semantics” is “a way to map a string of
symbols to a structure defined in some field of mathematics
or science.” Examples would include mapping a STEP file
to a structure in solid geometry or mapping a string in
the Modelica language to a system of hybrid differential
algebraic equations.

For a particular modeling environment, we have to live
with what we are given. This means we have to deal with
different modeling environment semantics mapping strings
to different mathematical domains, using different methods
to define these mappings with differing degrees of rigor,
etc. For example, a solid modeling semantics maps models
to solid geometric objects with semantic rules such as “no
two distinct solid parts may overlap in three space.” These
concepts are absent in the Modelica language definition.
However, it is possible to map a moment-of-inertia tensor
from the solid geometry domain into the domain of differen-
tial algebraic equations. There are some semantics that are
explicitly defined only in the solid modeling environment,
such as the concept of inertia of a material object (which
is arguably a scientific rather than a purely mathematical
semantics). But there are some semantics common to both
modeling environments, such as units and linear operations
on vectors in three space.



When two models are composed in FUSED, a developer
can specify that one model may publish (pub) an object that
is used to satisfy a subscribe (sub) in another model. FUSED
automates this process and uses strong type-checking as
part of what might otherwise be a manual cut-and-paste
operation. When an object is specified for publication, what
is actually published is a string of symbols whose semantics
are an abstraction that is common to both modeling envi-
ronments. In the case of a moment-of-inertia tensor, this is a
3×3 matrix of floating point numbers with associated units.
Using our concept of language extension, FUSED provides
additional information to this pub/sub process. For example,
we extend the Modelica language slightly to include the
concept of a frame of reference, in which case FUSED
provides more semantics and type checking than standard
Modelica.

In any particular FUSED installation, a set of common
abstract types are defined. This means there are abstraction
relations from types of objects in the various supported
modeling environments to and from these common abstract
types, made concrete in tools that can extract objects from
various modeling languages and convert them to and from
a common representation. In principle, the semantics of
a pub/sub relation in a FUSED specification involves a
mapping to a mathematical domain common to the two
modeling environments, plus an abstraction relation for each
of the two modeling environments based in theories of
abstraction that would typically be different for the two
modeling environments. Arguments then need to be made
that operations on a subscribing model are correct; i.e.,
information lost in the abstraction process does not render
model analysis results invalid. In current practice, we just
write Silver specifications for the common representations
and conversion tools. This is an area rife with opportunity
for further theoretical research and improved rigor.

Figure 1 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, the system engineer would like some
assurance that the solid model of an aircraft is consistent
with the avionics model. In particular, the engineer would
like assurance that the logical hardware resources and con-
nections in the avionics model are consistent with electronics
boxes and cables in the solid model.

Using the FUSED composition language, the system
engineer specifies that an abstract representation of the static
structure of a model be published for both models. This is
a graph in which nodes and edges may have one or more
types specified, where the set of node and edge types is just
a list of identifiers specified in each model. (It is typical
to provide language extensions that allow model developers
to specify additional typing information if the standard
language mechanisms are not sufficient.) For example, in
the published abstraction of a solid model, nodes represent
parts and assemblies and edges represent containment and

attachment relations.
What the system engineer wants is assurance that there

is a subgraph isomorphism between the logical hardware
elements and connections in the avionics model and parts in
the solid model, where the types of corresponding nodes
and edges satisfy a specified type compatibility relation
(e.g., logical processors and buses in the avionics model
map to LRU and cable parts in the solid model). This
property can be concisely specified in SMTLib, a standard
language agreed upon by the Satisfiability Modulo Theo-
ries research community for which there are a number of
tools. This specification subscribes to two abstract model
structures, and the SMTLib modeling environment provides
a “check satisfiability” operation. By periodically running
this FUSED composition specification, the system engineer
receives ongoing assurance that this consistency property is
maintained between the two models as they evolve during
development.

IV. MODEL ENVIRONMENTS AND COMPOSITIONS

A model environment is a set of languages and a set
of tools that support a particular engineering discipline. An
example is OpenModelica [6], to which the primary human
input language is standard Modelica, and whose toolset in-
cludes a compiler and a simulator/solver. Any representation
that holds data of interest at the system engineering level is
also a language that FUSED at least needs to be able to
read. For example, simulation trajectories and linearizations
contain data of interest.

A specific model or related set of models is stored in a
folder or project that is associated with a particular modeling
environment. For example, the concepts of a modeling
environment and an Eclipse project type are effectively
synonymous, and there is an Eclipse plugin to support the
OpenModelica project type.

Extending FUSED to support a particular modeling envi-
ronment involves the following activities.

• Identify types of model elements that should be made
visible at the system engineering level (in FUSED
composition specifications). Ideally, many of these will
already exist in the FUSED common type system;
otherwise, they must be added.

• Define extensions to the primary language to support
FUSED capabilities. Two near-universal extensions are
the ability to declare that elements of a model are
to be published (i.e., made visible for use in FUSED
composition specifications) or subscribed (i.e., provided
to a model when it is used in the context of a particu-
lar FUSED composition specification). Other common
extensions allow additional typing information to be
declared or support parametric/configurable models.

• Identify operations that can be performed on the model
using the available modeling environment tools. (Mixed
initiative operations that require some interaction with



Figure 1. Model consistency usage scenario and FUSED composition specification

a domain expert should be permitted, although we have
not demonstrated that to date.)

• Develop wrapper specifications in the FUSED language
to present a set of convenient interfaces to higher-level
FUSED programmers. This is not essential, but often
makes the model more easily used by system engineers
who are not familiar with either the model structure or
the modeling environment.

The final section of this paper outlines how we implement
these extensions. Basically, we do this by extending the
existing build procedure to perform the identified operations
automatically. Invocations of existing tools are wrapped
with invocations of preprocessors and postprocessors that
implement new FUSED capabilities and provide a proper
interface into the FUSED framework.

When models are composed in a FUSED specification,
that specification declares a pattern of publish and subscribe
relationships between models together with other informa-
tion such as scripting of operations to be performed. It would
be quite tedious to declare this for every individual model
element, and declaring a dependency for every individual
element would also make composition specifications less
robust to model edits. FUSED publishes structured sets of
model elements, and FUSED subscribes are satisfied using
a name space search procedure. The FUSED composition
language includes a set of operations to perform restruc-
turings, renamings, etc. (in the figures that show FUSED
composition specifications, that is what the boxes labeled
“FUSED” represent).

There is always a risk of mismatch, but this risk exists
even if dependencies were manually specified for every
individual scalar (which adds risk due to losing information
about structural relationships between elements). FUSED
mitigates this risk by providing a fairly powerful type
system. In addition to basic types and type constructors like
floats, integers, and arrays, FUSED supports the concept of
a type qualifier. A type qualifier is additional information
such as units, frames of reference, or uncertainties, that can
also be associated with a model element. Modeling language

extensions can be used to increase the amount of typing
information provided and checked, and type qualifier opera-
tions are available in the FUSED composition specification
language.

Figure 2 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, three domain-specific models are
developed to represent a UAV from three viewpoints. A
solid model is used to capture and analyze the physical
structure, a computational fluid dynamics model is used to
analyze aerodynamic forces on the vehicle, and a dynamical
systems model is used for flight dynamics. The models are
configurable, so that system engineers can explore various
combinations of design parameter choices.

The vehicle dynamics model needs data that can be
obtained from a mass properties analysis of the physical
structure, such as mass, moment-of-inertia tensor, and con-
trol surface areas. The vehicle dynamics model also needs a
set of stability derivatives computed at a number of trim
points, which can be obtained by CFD analysis. Rather
than cut-and-paste for each UAV configuration, the vehicle
dynamics model is modified slightly so that it subscribes to
these values, which can be published by the other models.
When the FUSED composition specification is executed,
the models are configured, analyses executed, and data
converted and copied as needed to obtain the specified
vehicle dynamics analysis results; e.g., a set of simulation
traces. (This is similar in principle to what can be done
with some existing commercial tools. A difference in this
example is that FUSED supports complex object types with
strong type checking.)

V. DEVELOPMENT PROCESSES

Models and associated assets are traditionally managed
using revision control systems such as Subversion or Git.
The design of FUSED also supports remote model servers.
In order to execute a FUSED composition script, all that
is needed is the ability to send a block of data to satisfy
model subscriptions and receive a block of data published



Figure 2. Model configuration and pub/sub scenario with FUSED composition specification

by a selected operation. To make full use of FUSED (e.g.,
modeling language extensions), the model servers should
also host a FUSED framework.

The set of all FUSED composition specifications in a
development project captures much semantically rich infor-
mation about the relationships and dependencies among all
the models. Moreover, we conjecture that this information
is captured much more concisely and manageably — the
number of keystrokes needed to enter publish and subscribe
declarations in models and abstract pub/sub dependencies
in composition specifications is relatively small compared
to the list of detailed element-to-element dependencies enu-
merated by the FUSED tools as it processes composition
specifications. Moreover, abstract pub/sub relationships are
robust with respect to changes in the individual models and
thus more easily maintained. Finally, the fact that FUSED
composition specifications are subjected to a variety of auto-
mated analyses provides some assurance of the correctness
of these relationships.

The dependency relationships between models that are
captured in FUSED composition specifications can be used
in a variety of ways. Firstly, FUSED builds on traditional
build/make dependency tracking technology. As FUSED
composition specifications are executed, operations on in-
dividual models are only invoked as needed to provide up-
to-date published data. Secondly, FUSED encourages and
supports the use of configurable models. When an operation
is performed on a model, this means the results depend
on the values used to satisfy subscriptions in that model.
We have prototyped results caching, so that repeats of an
operation need not be done if the results of an earlier
matching analysis have been cached.

Models are created for parts of the system in order to
understand their properties from a particular viewpoint (e.g.,
a Modelica model) to understand certain kinds of dynamical
behaviors. We also want to support models that can be used

as part of the design process itself, models that can be
applied to other models. Examples of this are trade space
models to support trade space exploration and Pareto frontier
identification, various kinds of design optimization methods,
and model and multi-model verification and validation ac-
tivities. In cases like this, a FUSED composition is not an
assembly of parts that is analyzed to determine properties
of the assembly; it is executed to carry out a design activity
on a model or composition of models. To support this,
FUSED can publish and subscribe types of elements that are
abstractions of models themselves; e.g., the abovementioned
typed object graph, as well as constraints and properties.

A variety of process models have been developed to
perform uncertainty propagation and global sensitivity anal-
ysis to understand how model evaluation metrics depend
on model design configuration parameters [3]. We are par-
ticularly interested in combining this sort of analysis with
our dependency tracking capabilities to perform smart ripple
effects analysis — is a change in a model big enough to
significantly impact other models that relate to it in some
way?

Figure 3 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, the requirements engineering team
is wrestling with the trade-offs between quality metrics like
range, endurance, payload capacity, and cost. They are also
still uncertain about what the available technology will make
possible. What they would like to do is use a tool like Trade
Space Visualizer [4] to explore the trade space and identify
the Pareto frontier for the range of possibility given current
technology.

The aeronautical engineering team has created an initial
equational model (a spreadsheet) that allows these metrics
to be estimated for a variety of design alternatives; e.g.,
different choices of wing structure, batteries, motors, and
propellers. If the aeronautical engineers knew the final re-



Figure 3. Mixed initiative design optimization scenario and FUSED composition specification

quirements for range, endurance, etc., then they could select
design choices that optimize the vehicle for the selected
requirements. In fact, the aeronautical engineers constructed
an optimization model (written in the widely-used MiniZinc
language [5], for which a number of tools are available) that
automatically makes good choices when given a final set
of requirements. Such design decisions are irrelevant to the
work of the requirements engineering team, who are merely
interested in what could be achieved in terms of cost and
endurance if they decided that low cost and high endurance
are the dominant concerns of the end users.

To support these activities, the system engineering team
creates a FUSED specification that composes the MiniZinc
design optimization model with the requirements and equa-
tional models to create what is essentially a self-optimizing
aircraft model that is parameterized by range, endurance,
payload and cost — the parameters the requirements en-
gineering team wants to explore. Trade Space Visualizer
provides a variety of sampling methods that can be applied
to an abstraction of a design model in which that model is a
function that can be evaluated for a set of input parameters
to determine the values of a set of evaluation metrics. In
this FUSED composition specification, this is an abstraction
that can be published by a model. The Trade Space Vi-
sualizer model subscribes to the functional abstraction that
is published by the design optimization model. When this
FUSED specification is executed, the Trade Space Visualizer
will perform a statistical sampling of the design space by
invoking the design optimization model/function, identify
the points on the Pareto frontier, and provide a variety
of graphical display formats that allow the requirements
engineering team to explore this space.

VI. EXTENSIBLE FRAMEWORK

In this section, we briefly overview the current FUSED
framework implementation architecture and technologies.

We currently use TOPCASED [7] for both its SysML

and AADL modeling environments. TOPCASED is based
on Eclipse, and one can think of an Eclipse project type as
a modeling environment type. Figure 4 illustrates a set of
model projects for a variety of modeling environments.

A central abstraction for a model is a set of operations
that map a set of subscribed values to a set of published
values. (This is an abstraction that can itself be published,
e.g. for use by sampling-based uncertainty propagation mod-
els or gradient-search design optimization models.) These
operations are implemented as a set of targets in a build
script template that is created when FUSED is extended to
support a particular modeling environment. The build scripts
wrap calls to existing modeling tools with calls to prepro-
cessors and postprocessors to handle language extensions,
publish and subscribe operations, etc. Development of these
preprocessors and postprocessors is another task performed
when extending FUSED to support a particular modeling
environment. There are currently cases where build scripts
need to be tweaked manually to handle configurable models

Figure 4. FUSED Project Types and Relationships



(acceptable to a software engineer but not to a system
engineer), but eventually such configuration, when needed,
should be generated automatically from a FUSED wrapper
specification for a configurable model.

Specifications written in the FUSED composition lan-
guage are models just like any other; e.g., they can them-
selves be composed with other models. There is a modeling
environment for the FUSED composition specification lan-
guage itself. The build scripts here are not taken from a
library, however; they are entirely generated from FUSED
specifications by a FUSED compiler. When executed, these
scripts mix calls to other model project builds with calls
to various FUSED operations; e.g., to perform restructur-
ings on structured sets of published and subscribed model
elements. Data is exchanged using an XML common type
representation format, with conversions and type checking
being performed by the preprocessors and postprocessors
associated with each modeling environment.

The common types and their representations and con-
version routines, and the preprocessors and postprocessors,
are specified in the attribute grammar specification lan-
guage, Silver. Attribute grammars are well-suited to concise
specification of complex languages and data representation
structures. Silver provides a rich typing system (e.g., at-
tributes on nodes of syntax trees may themselves be syntax
trees, and generic attribute types are supported), so there
is plenty of power to specify complex checks and conver-
sions. Silver also has features supporting seamless language
extension. This is chiefly done by specifying additional
rules that recognize extensions to a language, and then
placing “forwarding” constructs within those rules to specify
a translation from the extended language back to the original.
For example, a Silver-specified preprocessor would handle a
subscribe declaration (an extension to the original language)
by forwarding it to (rewriting it as) a declaration containing
a literal value in the syntax of that language, after doing the
appropriate look-ups and type-checks and conversions from
a FUSED XML file. This re-writing is performed at the
level of abstract syntax trees, rather than strings, allowing
for more precise and fine-grained translations.

In summary, extending FUSED to support a specific
modeling environment entails developing three kinds of new
assets.

• Preprocessors and postprocessors for selected language
representations, written in Silver. These implement
language extensions such as publish and subscribe
declarations.

• An ANT build template whose targets correspond to all
the operations supported on models of that type. The
template may contain subscriptions as needed to handle
configurable models and parametric analyses.

• New common abstract types, including type-checking
and conversion algorithms, may need to be specified in
Silver and added to the FUSED common type system.

VII. DISCUSSION

There is a trade-off involved in providing FUSED with
a relatively powerful typing and language processing capa-
bility. This makes extending the framework more complex
than if all it did was automate cut-and-paste of strings. On
the other hand, it provides much more power. In our own
demonstration exercises, we had unintended mismatches of
units and frames of reference detected by our own frame-
work. (Both of these classes of design defects are known to
have resulted in a number of engineering failures and are
still considered by many to be a source of significant risk.)
More than this, though, is the potential for new capabil-
ities like verification of non-trivial consistency conditions
between models and support for more general mix-and-
match of design process methods such as mixed-initiative
multi-disciplinary design optimization. We conjecture that
the potential benefits outweigh the additional extension
complexity, which is a one-time overhead for each modeling
environment in any case.

We believe that our choice of higher-order attribute gram-
mar and language extension technologies was a good one,
as they provide the added ability to compose models written
in different languages by simply augmenting models slightly
using simple syntax. We have not found it inconvenient to
deal with UML languages via their XMI representations,
and we have at least as much power to work at the meta-
language and meta-type levels. Our language extension and
pub/sub methods seem able to handle fairly complex model
synchronization problems. The relationship to (semantic)
web technologies is a bit more nuanced, and we currently
tend to think of the relationship as one that invites synergistic
integration. It is a combination that is needed to provide
good support for distributed, concurrent, collaborative de-
velopment. As one might expect, Silver is best suited for
handling textual languages and representations having well-
defined syntax, but relatively weaker for languages defined
informally by the GUI or API of a specific tool.

Additionally, the overhead introduced by FUSED is mini-
mal. While we have not conducted a thorough evaluation of
the overall runtime impact, we observe that the time taken
to translate FUSED-extended models to their equivalent
base language is negligible and there is no impact on
the simulation runtimes for these translated models when
compared to the originals. Furthermore, while the process
to extend FUSED to support a new modeling environment
is in itself time consuming, it is a one-time effort. Assuming
the software engineer develops a robust set of ANT build
templates, their invocation will require no additional changes
except for special cases. In these special circumstances,
the software engineer only needs to modify the existing
template rather than creating a new build script from scratch
(a common process today).

FUSED is a work in progress. Our initial set of exten-



Table I
MODELING ENVIRONMENT EXTENSIONS

Category Language Toolset

requirements SysML TOPCASED

trade-off studies (tool-specific) Trade Space Visualizer

design optimization MiniZinc minizinc, ECLiPSe

spreadsheet (tool-specific) Excel

solid/geometric (tool-specific) Creo/ProE

fluid dynamics (tool-specific) Athena Vortex Lattice

dynamical systems Modelica OpenModelica

avionics/vetronics AADL TOPCASED/OSATE

model verification SMTLib Z3

sions supports nine domain-specific modeling environments
(shown in Table I), but the set of language extensions and the
set of common FUSED types is not what would be desired
in a full system engineering project. The current tools for the
FUSED model composition language only support publish
and subscribe relations between models and combinations of
operations provided by the associated environments, which
supports only some of the various kinds of compositions dis-
cussed earlier. The FUSED implementation needs additional
features — e.g., occasional hand-configuration of build tem-
plates, acceptable to a software engineer but probably not
to a system engineer — should be automated. As with all
development projects at this phase, maturation is needed in
the areas of documentation, error reporting, refactoring to
facilitate easier extension, and general defect reduction.

Additionally, FUSED composition specifications capture
much detailed information about dependencies between
models, and we are developing ways that FUSED can use
this data. We want to support specification and use of
configurable models — component suppliers should pro-
vide a space of capabilities to system engineers who are
making system-level trade-offs [1]. We want to support
smart inter-model ripple effects analysis in which developers
can analyze the magnitude and significance of changes or
uncertainties in one model on other models. We want to
support verification of consistency between models. We want
to support highly parallel development processes, to the
point that requirements engineering may be just another
activity that goes on throughout a product and product line
life cycle.

We have mentioned several areas where we believe that
further research could yield significant benefits. Among
these are an improved theory of semantics and abstrac-
tion, methods for smart change propagation analysis based
on uncertainty and other “close enough” type qualifier
information, experience with and improvement of inter-
model consistency verification methods, improved caching
of subscription-dependent model analyses, and more syner-
gistic integration with advanced configuration management

and model server and program management technologies.
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Abstract—A Design Framework is presented that aims at 
capturing the design rationales in the process of designing 
embedded or cyber-physical systems. Its principal concepts 
cover storing the design rationales, which encompasses 
design decisions and analysis results, by linking design goals 
to concrete questions and analysis results for a particular 
scope of the system. The Design Framework does also 
provide a mechanism for using heterogeneous models for 
different system parts and linking them by means of 
essential design parameters and their dependencies. An 
elaborated conflict detection mechanism at different levels is 
provided in order to enable the designer to keep the design 
consistent throughout the process. The paper also presents 
first experiences in applying the prototype in industrial 
contexts. 

Keywords: model-based engineering; modeling 
formalisms; multidisciplinary design; design framework; 

I. INTRODUCTION 

In the current practice of designing Cyber-Physical 
Systems (CPS), like MRI scanners and copiers, designers 
face the challenge of balancing the abilities to create a 
variety of models for analyzing system options and to 
track their role in the decision process. This often causes 
the following questions to pop-up in design processes: 

• Why was a model made? Are the underlying 
assumptions still valid? 

• Do the results still hold? Is the version of this 
model up-to-date? 

• How do analysis results relate to design 
parameters? 

• How is the system affected by a design parameter 
change? 

• And many more questions… 
The problem of capturing design rationales was 

already addressed in [1], [2]. We think that the problem is 
related to the challenges for CPS as observed in [3], i.e. 
‘Low productivity of CPS software engineers’. In this 
paper we present a so-called Design Framework that aims 
at capturing the design rationales in complex system 
design. The framework is developed by using our 
institute’s knowledge about designing complex systems at 
mainly Dutch-based companies like Océ-Technologies, 
Philips Healthcare, and Vanderlande Industries.  

CPSs do always require the involvement of specialists 
from multiple disciplines. The multidisciplinary character 
of complex systems does require different modeling 
approaches too. Figure 1 shows the multidisciplinary 
character of a generic design process. For design, a system 
overview is needed, which is one of the main concerns of 
system architecting. An architect compares the design 

options and takes decisions to choose from these which 
will impact the subsystem disciplines. The system 
overview directs the variety of disciplines, like the 
software, mechanical, and electronic hardware. Each of 
these disciplines, sometimes organized as departments, are 
bothered with delivering parts of the complete system 
design. System architecting is also fed by the disciplines 
themselves, e.g., when new design information within a 
discipline becomes available. Therefore a Design 
Framework that captures design rationales should capture 
overall system overviews as well as overviews within the 
disciplines to come up with adequate design information 
and their interactions. 

Single function or 
discipline, e.g., software

Single function or    
discipline, e.g., 

electronics

Single function or 
discipline, e.g., mechanics

System
architecting

Functional/
discipline 
overview

Functional/
discipline 
overview

Functional/
discipline 
overview

trend

trend

Design option

System
overview

Design option

 
Figure 1 Multidisciplinarity in CPS design. 

The models that are derived at the overall system level 
as well as in each of the disciplines are stored and should 
be related to each other. This is why the design rationale 
feature of the Design Framework is also denoted as model 
and result management. For relatively stable functions of 
the system the partial models are increasingly playing the 
role of starting point for implementation. The specification 
languages used for this are tailored towards the specific 
domain: they are called domain-specific languages. 

A second motivation to develop the Design Framework 
is that today’s complex system development requires 
modeling for analysis, see e.g., [4]. The main reason for 
modeling is rooted in the need to have design questions 
about a system answered, e.g., a performance model is 
made to answer a performance issue. We observe that 
multiple formalisms (the languages to make the models) 
are applied in industrial practice. The need for multiple 
modeling formalisms stems from their ability to answer 
different design questions. We also observe that CPSs are 
hardly modeled in a complete way [1]. Rather only the 
critical parts are modeled, because it is often not cost 
effective to model the complete product. 

A third motivation for defining the Design Framework 
is the presence of concurrent engineering in design 
processes. All specialists from diverse teams are designing 



the same system simultaneously and the communication 
between them is crucial for early error detection, which is 
usually hampered by implicit assumptions and failing 
communication of design decisions. Many organizations 
have organized their processes according to well-
structured process approaches like RUP1, DO-178B2 and 
even may apply the CMMi3 or ISO/IEC 15504 standards 
to assess their process maturity. On the other hand, we 
have observed organizations that develop complex 
systems, but do not have an explicit process in place at the 
detailed design level; in such cases only the main 
milestones are well defined. The Design Framework aims 
at supporting different implementations of processes. It 
therefore has a very simple and basic concept of a process 
step, i.e. the generic design step (see Section II). 

The remainder of this paper first introduces the 
concepts of the Design Framework and its prototype tool 
in Section II. Next, experiences while applying the Design 
Framework are shown in Section III. Finally, an outlook 
for further development on the Design Framework is given 
and the paper is concluded in Sections IV and V, 
respectively. 

II. DESIGN FRAMEWORK 

In this section, we present the reasoning that led to the 
proposed approach, viz. a model that is targeting the 
support of a model-based design process as we believe it 
should be, i.e., with partial modeling in order to address 
the relevant design issues, as well as showing how it 
relates to current industrial practice. In the end, a prototype 
that embraces these concepts is presented. 

A. The model 

One way of classifying the variety of activities in a 
design process is according to their level of formality. On 
the one hand, more formal activities exist, which cover 
aspects like creating, manipulating, and analyzing concrete 
models. On the other hand, the more informal activities 
describe all the development steps that are made and the 
design decisions that are taken. These steps and decisions 
put all models in the context of the desired system. The 
informal activities can also be further distinguished: they 
are either activities related to the concrete design process 
or activities related to the design itself. 

In order to support all design activities in a design 
process, a generic Design Framework model is proposed, 
see Figure 2. The Design Framework consists of three 
abstract levels or layers: design flow, design views, and 
models. 

Each level incorporates the process and status aspects. 
The framework is designed to be generic and to be able to 
fit in any existent design process or development life 
cycle, any discipline or specific view, and to enable the 
usage of any formalism required in the working process. 
Due to the generality of the approach, multiple features 

                                                           
1 http://www-01.ibm.com/software/awdtools/rup/ 
2 http://www.esterel-technologies.com/do-178b/ 
3 http://www.sei.cmu.edu/cmmi/ 

can be added to support the designer solely based on the 
data, which is already present in the model – conflict 
detection, impact of a design decision, design exploration, 
etc. The ability to tailor this framework to the needs of a 
specific environment is considered an important usability 
issue. Some of these features will be introduced in Section 
IV. 

 
Figure 2. Design Framework model 

1) The top layer: Design flow 
Designing as an activity can be described by two main 

ingredients – taking a design decision, and, based on it, 
refining the designed system until the moment in time that 
a set of options enforces a next design decision to be taken 
(see Figure 3). 

 

 
Figure 3 Design decision and design step 

If we try to represent this process, it will be tree-like 
and comprise of a number of nodes (system designs) and 



edges (design decisions or options) – see Figure 2, design 
flow level. Often, some design activities do not lead to the 
desired system (either dead branches/dead ends, or some 
possibilities are not explored further (yet)), alternatives, or 
the designers work on a few options in parallel in order to 
gain better in-depth insight in particular aspects of each 
option. 

2) The middle layer: Design views 
A design view may be considered as a specific 

representation of the system. It might represent a 
discipline, e.g., software, hardware, mechatronics, 
electronics, and material flow, or a specific aspect, e.g., 
performance, safety. Every view bears a unique 
decomposition of the system under design – see Figure 2, 
design view level. Structural basic blocks are used for the 
decomposition. They form the skeleton of the view. These 
blocks may contain or may be contained in other blocks. 

The basic blocks are used as a container of the detailed 
models (see Figure 4). The blocks are formalism-
independent and consider the model from a black box 
perspective. One block may contain multiple models, each 
of which is developed in order to analyze a specific 
concern or quality of the system or parts of it. If multiple 
models are present in one block, they are not considered as 
redundant, because they may model different aspects of 
the same system block. The necessity of being able to 
accommodate multiple models is also based on the need of 
answering multiple design questions by complementary 
analyses and the inability of any specific formalism to 
cover all required aspects. Note that multiple system 
aspects can be dealt with in one view (with multiple 
models) or in multiple views (each with its own model). It 
is up to the design team to decide which representation 
best fits their needs. 
 

 
Figure 4 System block 

Every block is characterized with a set of parameters. 
Each parameter might have a (range of) value(s) and a 
unit, and may have dependencies to other parameters. The 
parameters are used as a mechanism to couple blocks 
either within one or between multiple views. The 
interoperability of multiple formalisms and models is also 
enabled through these parameters. The basic block and the 
parameters that characterize it are used as an abstraction of 
the real detailed models. Due to the parameter 

dependencies, conflict detection between concrete 
parameters and their values – inputs or outputs of various 
models and their analysis results – becomes possible.  

3) The base layer: Models 
The need of modeling arises from the need of gaining 

in-depth knowledge of the system under design or its parts. 
Each model is expressed in its own formalism, which is 
suitable for analysis of specific aspects/questions. The 
model – see Figure 2, model level – usually has a number 
of inputs: a set of facts, assumptions, measurements, or 
even other models due to model transformations. The 
model, dependent on a chosen formalism and its degree of 
abstraction, having inputs with their errors, unknowns, and 
uncertainties, inevitably also has its own accuracy, 
credibility, and working range [5]. These are relevant 
attributes that should be known to the designer. 

In general, multiple experiments can and will be 
performed on one model. The type of experiment is 
limited by the set of tools and their abilities. The decision 
to store the results of a particular experiment is under 
control of the designer. With any experiment, data should 
be stored about the tool that is used, its parameters, and the 
results. The results may be used for further decision 
taking, verification of assumptions or system qualities, or 
specification of some system parts. A specific result may 
be another model which in its turn is used for further 
analysis in case of model transformations. The latter 
allows for relating the design framework to so-called tool-
chains. 

4) Horizontal decomposition of the model 
The vertical layering of the model can be naturally 

extended by a horizontal decomposition, see Figure 5. This 
decomposition is preserving the dual nature of design in 
itself: design process/activity versus design result/status, or 
in other words the ‘why’ and the ‘what’ aspects of the 
system under design. In the realm of this reasoning each 
horizontal layer can be interpreted as ‘how’ the activity 
can be performed or ‘how’ the design status can be 
detailed even more. 

 
Figure 5 Design activities –’why & what & how’ design reasoning  

A typical design process involves taking design 
decisions, detailing the design, and checking whether or 
not the designed system meets all requirements. These 



decisions result in a design status of the system design at 
this point in time (the ‘what’), while the reason for the 
design status is the design decision itself (the ‘why’). In 
order to understand the implication of a design decision, 
relevant questions should be posed and their answers 
evaluated (the ‘how’). Usually such questions have a 
particular scope within the system – a particular system 
block. The relation between the system design and the 
system blocks is described by ‘how’ they are related to 
each other (the concrete system decomposition). 

Similarly, system block characteristics are the reason 
for posing particular questions and vice versa. Often, in 
order to answer a design question, further modeling is 
required. The model can be analyzed in an experiment and 
its results will be supportive to providing answers. Hence, 
the experiment is seen as detailing the design question and 
the model as detailing the system block. 

At all levels top-down and bottom-up reasoning is 
combined in reality. For example, the need for a particular 
experiment might predetermine the type of model to be 
built, but alternatively the model might constrain the type 
of experiment that can be done with it. 

The explained design reasoning concerns just a single 
design step in the text above. In practice, multiple steps are 
required for the entire design process of a system: so many 
times this design reasoning will be applied. 

5) Core domain knowledge 
Most of the system developments are not a greenfield. 

That is, a lot of knowledge from other projects, from the 
system designers themselves, and common knowledge is 
already available from the start. Moreover, a known set of 
modeling tools is at hand for the developers to support 
them in their modeling activities. The presented design 
framework offers a means to store this information as well. 

The main reason for including this in the framework is 
to be able to manage the interactions with changes in the 
core domain knowledge such as evolving knowledge 
resulting in adapted system patterns, and different versions 
of tools. This is a suitable way to store information about 
reusable library components as well. 

B.   The Design Framework prototype 

These concepts were used as a starting point for 
developing a tool prototype. The prototype is based on a 
domain-specific language (DSL), also called meta-model, 
that represents the structure and relationships of all 
concept elements. This DSL was developed with the help 
of the Eclipse Modeling Framework4, it being used for 
code generation in order to support rapid prototyping and 
early, continuous testing. Based on this meta-model also 
two graphical editors were developed, partially 
automatically generated by the Graphical Modeling 
Project5. 

The first editor is supporting the user when taking 
design decisions and storing the design rationales in the 
form of design questions and answers which are linked to 

                                                           
4 http://www.eclipse.org/modeling/emf/ 
5 http://www.eclipse.org/modeling/gmp/ 

the analysis results that support the conclusions. Moreover, 
the editor shows the current system design in term of 
views. The consecutive design steps result in a directed 
graph, where each node represents a design step. This 
editor is called the FLOW editor (see Figure 6). From each 
of the views, a second editor can be initiated. It is meant to 
represent the system structure and its parameters, 
dependencies, models, and experiments that belong to one 
view. This is the VIEW editor (see Figure 6).  

 
Figure 6 Design Framework– the basic set of graphical editors 

Both editors allow to print the graphical representation 
which can facilitate various technical meetings by 
providing the most relevant and up-to-date status of the 
system under design. 

The data of the Design Framework model is stored in a 
specific XML file, which serves as an input to all graphical 
editors. That allows easy sharing of a single “design” file 
among the development team and locally regenerating all 
graphical representations. It is recommended that along the 
design itself also all model files will be shared with the 
entire team. 

Currently, the two graphical editors are part of the 
prototype, but a number of other possible editors are 
expected to become available (see Figure 6, bottom part). 
One such editor would support easier manipulation of 

* Experiment editor 
* Exploring system aspects (RELO) editor 
* Other formalism specific editors 
* etc. 

FLOW  
editor 

VIEW  
editor 



model experiments – from more convenient way to store 
the data to possible automation of the execution. Another 
editor would support creating and storing exploration 
traces or diverse system aspects using the relationship-
based exploration (RELO) approach, which is discussed in 
more detail in [6]. 

III.  EXPERIENCES IN APPLYING THE DESIGN 

FRAMEWORK 

Two industrial studies are presented to provide 
evidence that real industrial processes can be mapped to 
the concepts of the Design Framework. Moreover, the 
studies support one of our claims, i.e., that the design 
reasoning, one of the foundations of the Design 
Framework, can be observed in practice. 

A. Architecture team discussions 

In order to test the concepts as well as the prototype, a 
case study of an actual design process of one of our 
industrial partners was performed. The development of a 
new candidate for a customer system was already in place 
for a long period and still continues at the moment we are 
writing this paper. One of the authors participated in the 
weekly architect meetings and has observed the entire 
process in a period of 2-3 months. This served as an input 
for the Design Framework prototype and allowed us to 
gain experience with a real industrial problem at hand. 

1) Case introduction 
The result of the observations was the representation of 

the design process consisting of five design steps, see 
Figure 7. The system design – in terms of views, 
parameters, dependencies, models, and experiments –was 
getting enriched in each of these steps and was evolving 
over time. Each design step’s goal was detailed in a 
number of design questions to be answered, which were 
addressing diverse system aspects and parts. 

 

 
Figure 7 Abstraction of the design steps taken 

At the moment when we joined the design process, the 
architectural team was discussing five possible candidates 
(DS1). As a consequence, in the first design step we had 
five separate views which represent these candidates. As 
these candidates share their basic equipment blocks with 
identical parameters, we also introduced a separate 
equipment view. A view with scenarios, which were used 
as test cases for these candidates, was added as well. These 
scenarios were based on customer characteristics and 
allow testing the suitability of the candidates for different 
market segments. Finally, the evaluation view was added, 
in which all important system KPIs are specified as well as 

their estimates per scenario and per candidate in order to 
compare the available options. 

If we zoom in on a view, we see a graphical 
representation of the skeleton structure and an overview of 
all important artifacts of each block – parameters, their 
dependencies, models, and their analyses. For example in 
the case of candidate C4, the view has a system level block 
with only one additional level of decomposition into 
subsystems. Further decomposition at this point is not 
required, but can be added later. Its depth may vary at 
different places. At the system level three parameters are 
used to characterize some of the system aspects, where for 
example the cost per unit is dependent on the analysis 
results of two models. Also a number of models and their 
experiments are stored. The visual overview does only 
provide names of experiments, while all details – such as 
the experiment inputs and results, model path, tool, etc. – 
are accessible in the properties view of each block. The 
analyses results are used to formulate answers to the 
design questions of this current design step. 

After studying the availability aspect of the candidates 
and their time-to-market, a number of candidates were 
discarded. This resulted into a new design step (DS2), 
where the number of candidates were limited, while other 
aspects of the remaining candidates were studied. In the 
meantime, one of the discarded candidates was still being 
evaluated as a possible solution for a customer by another 
set of people (DS3). It turned out that this candidate was 
very suitable to this type of customer and it should 
therefore be preserved. In order to deal with the different 
candidates, the architectural team decided for a more 
generic system, which could be configured by a number of 
design parameters into each of the three feasible candidate 
solutions. 

This brought us to a next design step (DS4), in which 
the generic system’s performance is examined. Meanwhile 
another aspect became dominant: a visualization of the 
systems in this domain was very important and a limited 
feasibility study was performed. Once the structure of the 
generic system was fixed, the design activities focused on 
the control aspects of the system (DS5), where other 
design concerns play a role. At this point our participation 
in the design process has ended. 

Just to give an impression of the size of a typical 
design step in this study, the number of models used was 
12 and they were referenced 21 times, 16 experiments, 85 
system blocks for all views, 139 parameters, and 22 
dependencies. The total number of design questions for all 
five steps was 13. 

2) Observations 
Based on the experience we gained while following the 

industrial design process, a number of observations are 
made. The first is that when using the Design Framework, 
it is easier to track the status of the design activities. For 
example, in the first design step, the architectural team 
intended to explore all possible options of candidates and 
scenarios and study their availability characteristics. For 
that purpose the evaluation view was created. When you 



see its status in the VIEW editor, it is obvious that this 
intention was not carried out fully (see Figure 8). 

 
Figure 8 Evaluation view, only partially filled out 

A second observation is the fact that some implicit 
design activities become more explicit when using the 
Design Framework. A good example is the fact that even 
though one of the candidates was discontinued, other 
people went on using this candidate in preparing a 
customer quotation. Just looking at the top level FLOW 
diagram, the status of the design and its top-level design 
decisions become evident, and it is easier to keep everyone 
up-to-date. In this respect, it is interesting that even less 
structured processes are fitting the proposed candidates 
well and can benefit from the proposed methodology to 
achieve better transparency and more explicit, stronger 
reasoning.  

The third observation is that while following the design 
process, we observe also a pattern in the design activities, 
which is strongly related to our underlying design 
reasoning (see Figure 5). All design discussions were 
following the proposed pattern, but due to the fact that the 
architectural meetings were organized on a weekly basis 
there were a lot of activities that were happening in the 
background. The role of the meetings was to steer this 
process and take the main decisions.  

Figure 9 Elementary building block of the design process split according 
to responsibilities of architects and developers 

A decision process starts with the formulation of a 
goal, based on the current status of the system under 

design (see Figure 9). This goal can be decomposed into a 
set of design questions, where each question has its own 
scope within the system. In order to answer these 
questions, a set of analyses will be defined, which also 
indicates the types of models that can be used to achieve 
these purposes. These activities belong to the architects’ 
responsibilities. The development team is responsible for 
the actual development of the models and their analyses. 
These analyses will serve as preparation for the next 
architectural team meeting, where answer(s) based on the 
results can be formulated in an evidence-based manner.  

Following the scope of the responsibilities of the 
architects, an architectural meeting has to focus on (see 
Figure 10): 

1. Analyzing the experimental results (based on real 
measurements and/or models), 

2. Answering the design questions from the previous 
meeting,  

3. Identifying the next design goal and its questions, 
and 

4. Defining the required models and experiments in 
order to prepare for the next meeting.  

It can be imagined that the Design Framework tool can 
be used even during these meetings to structure them as 
well as to bring all up-to-date results into the room.  

 

 
Figure 10 The focal steps of an architectural meeting 

The fourth observation concerns the fact that the 
design process had to deal with a number of system 
candidates and all of those were simultaneously present in 
the system design process for some time. We choose to 
represent these candidates as separate views within the 
same design step. Another approach could have been to 
represent each candidate by a separate design step, 
together forming parallel branches in the design process. 
The approach we selected – representing each option as a 
view – has the advantage of allowing the candidates to 
share information available in the equipment view. If the 
second option had been selected – each candidate with its 
own design branch – the candidates could only have 
shared information via the core domain knowledge, which 
could also have been used to store the information about 
the equipment. Both approaches are feasible and equally 
suitable.  



B. Architecture overviews 

A second experience stems from a feasibility study in 
mapping an architecture overview upon the Design 
Framework. The architecture overview was defined to 
capture and to share architectural knowledge about the 
system latency aspects of one of the machines of one of 
our industrial partners. The overview was defined with 
help of the “A3 Architecture Overviews” method [2]. 

This method aims at capturing the information 
otherwise available in multiple and scattered documents 
and models as well as in people’s minds. The method 
results into an A3-sized sheet of paper, where both sides 
are used – one with more textual and context information, 
the other with more graphical and model information. The 
overview has a few key elements, such as functional flow, 
physical view, system concerns, key parameters and 
requirements, design strategies, design decisions, 
assumptions, and known issues. A feasibility study was set 
up with the goal to follow the creation process of A3 
overviews and to store the available design information in 
the Design Framework. 

1) Case introduction 
Creating A3 overviews is a time-consuming process 

that spans multiple iterations of creating its contents and 
communicating its status in order to validate it. Typically, 
in each iteration different design aspects are being 
questioned. The reason is that it is not simple how to select 
the most relevant information from various sources, which 
have different appraisals due to a range of perceptions and 
judgements. At the moment of writing this paper the 
overview creation process was still in progress. 

The first version of the architecture overview was 
focused on the visual representation of the system 
functional flow and physical view along with a few of the 
key parameters and system constraints. The mapping to 
the Design Framework concepts was trivial. The 
functional flow and the physical view were represented as 
design views within the Design Framework. The flow 
decomposition was depicted by a hierarchy of system 
blocks. Each visual representation of some of the flow 
steps became a model attached to the corresponding 
system block. A similar mapping principle was employed 
for the physical view. The key parameters section 
contained a table with values, which was represented by 
parameters belonging to specific system blocks. The 
system constraints section was also translated into a set of 
parameters, but some of them also had dependencies to 
other parameters. 

The successive versions of the A3 overviews contained 
more elaborated design information in terms of models. 
Some of the visual representations of flow steps were 
updated and more key parameters and system constraints 
were introduced. That resulted into a new design step in 
the Design Framework, where some models, parameters, 
and dependencies were updated and others were 
introduced. This version also had a partially filled text side 
of the overview, where some definitions of system 
parameters in different views were introduced as well as 

some system requirements and domain constraints. All 
these were also mapped to various models, parameters, 
and dependencies. 

2) Observations 
The main observation is the ease of mapping of the 

concepts of the A3 method and the Design Framework. 
While these two approaches have different goals, they are 
both trying to reveal and represent the design rationale of a 
system. That strengthens our confidence in the approach 
presented in this paper.  

Another interesting observation is that while mapping 
the system constraints and design decisions there was 
design reasoning containing “because” in its phrasing. In 
order not to lose this design rationale, we mapped it to 
design questions and provided the reasoning as an answer 
to it. That allowed us making the design rationale even 
more explicit than just being hidden among multiple 
parameter values put in a textual form. Each design 
decision had its own goal of elaborating or understanding 
specific parts or aspects of the system in a better way. 
With the Design Framework it was possible to provide the 
design rationale in the form of questions and answers 
along its goal – not the entire set of concerns but just the 
relevant ones. 

Knowing that the Design Framework and the A3 
overviews can be easily mapped to each other, we think 
that the information stored in the Design Framework may 
be used for generating such architectural overviews. It is 
important to note that this type of overviews is meant to 
present just a limited but relevant set of information, while 
the initial data set may be much larger – coming directly 
from the architects themselves (the original approach) or 
from the Design Framework. At this point the challenge 
would be finding appropriate techniques 1) to select the 
information that is to be used and 2) to change its visual 
appearance to the best suited form for automatically 
created overviews. 

IV.  OUTLOOK 

The two industrial cases for applying the Design 
Framework prototype show the applicability of the 
presented concepts and the reasoning framework behind 
them. All observations in terms of process and produced 
artifacts were seamlessly mapped onto the concepts.  

However, the Design Framework is more than that. 
There are a number of features that provide even better 
support to its users [6]. These features can automatically 
be harvested to support design activities as a result of the 
generality of the presented concepts and the incremental 
actual data that is provided by the user in the course of 
designing. Here we list those features: 

• Conflict detection. Based on the data that is being 
stored in the framework during designing, a 
continuous conflict detection mechanism can be 
employed to support the user. The mechanism 
applies to parameters, their values, and their 
dependencies and it will continuously check for 
incompatibilities. That also includes model 
versions and experiment inputs and results. 



• Decision tree and impact of design decisions. An 
important feature is the ability to deduce the 
impact of each design decision on the system 
under design. That can be obtained by differencing 
any pair of design steps and observing the changes 
in the designs. This feature facilitates retrospection 
of the decisions taken and their exact impact on 
the system. Often, when taking a decision this 
does not imply that designers are aware of the 
changes required to the design in advance. In such 
cases retrospection may help to improve the 
understanding as well as to give space for 
improvements when necessary. 

• Exploration or cause-effect analysis. This feature, 
also called relationship-based exploration (RELO), 
allows expanding interactively a different 
visualization, starting from any parameter and 
continuing the exploration in any direction based 
on the provided dependencies to other parameters. 
We can use this for showing and storing specific 
aspects of the system under design in cases where 
views reflect disciplines and the system 
qualities/concerns are spread among them (e.g. 
availability, performance).  

• Other features concern different representations of 
design activities based on time or based on the 
stability of system parts, reuse of information in 
different forms, collaborative work and meta-
processes, as well as tailoring the concepts and 
tool to custom domain needs. 

The current and future activities target the completion 
and maturity of the abovementioned features, which will 
enable us to validate the full potential of the presented 
approach. While these efforts are still in progress and are 
based on the confidence we obtained while applying the 
current version of the Design Framework prototype on 
various industrial problems, we focus now on real-time 
application of our tool inside the industry. 

Other activities will be focused on investigating the 
feasibility of this approach for prescriptive processes as 
well. Such repetitive processes can be found in some 
domains, such as aerospace and chemical industries, but 
also in different lifecycle phases, such as sales and 
certification. Another type of investigation that we 
envision is on applying the Design Framework in areas as 
design space exploration and set-based design. Last but not 
least, we would like to find out more about the different 
roles of people involved in design – sales, architects, 
developers, testers, integrators – and their primary interests 
and possible benefits when using our approach. 

V. CONCLUSIONS 

We have shown the concepts of a Design Framework that 
supports development in industrial contexts and have 
presented observations that show its feasibility and 
relevance. The added value of the Design Framework 
approach compared to the existing way-of-working of 
developing CPSs is: 

1. Integrated support of design activities, covering three 
related, but different levels – process (design flow), 
system decomposition (views), and models and 
analyses.  

2. Characteristic of the approach is its flexibility of 
using different tools and formalisms, which enables 
designers and architects to deal with model 
heterogeneity, 

3. Design-time error detection by keeping the 
dependencies explicit between design decisions, 
system elements, and models, 

4. Support for incomplete modeling, and 
5. Ability to show the impact of each design decision on 

the system under design. 
Points three and five are still to be validated in 

industrial environments. 
The framework is domain independent and can be 

applied in a variety of industries when designing cyber-
physical systems in a model-based way.  Along all its 
advantages, there are also some concerns as well. The 
main difficulty of applying it in industry is the need of 
introducing a new way of working, which involves 
exercising more discipline and tidiness and may not be 
easily accepted. We expect, and are supported in this by 
our observations, that this will pay off with reduced time 
for communication, less implicit decisions, and a good 
overview to all members involved in the design process.  
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Abstract—The design and implementation of cyber-physical
systems gather multiple domains, from low-level physics up
to complex control of systems to implement a full function.
Such complexity requires particular strategy to characterize
each level of abstractions, and then integration to ensure the
system under consideration is correctly built. The advent of
Model-Based Engineering is often perceived as a silver bullet
to achieve all these complex tasks: the system designer can
master its design through proper model artifacts (blocks,
connections, properties, . . . ), virtual integration of system
blocks, and analysis. However, current MBE processes usually
cover vertical analysis, and address only a few aspects like
scheduling or behavioral analysis, while CPS would require also
horizontal analysis of the system, combining analysis results.

In this position paper, we review experiments on the use of
AADL to design CPS, and highlight challenges, threats and
opportunities to support analytical virtual integration.

I. INTRODUCTION

The design and implementation of cyber-physical systems
gather multiple domains, from low-level physics up to
complex control of systems to implement a full function.
Such complexity requires particular strategy to characterize
each level of abstractions, and then integration to ensure the
system under consideration is correctly built. The advent
of Model-Based Engineering is often perceived as a silver
bullet to achieve all these complex tasks: the system designer
can master its design through proper model artifacts (blocks,
connections, properties, . . . ), virtual integration of system
blocks, and analysis.

However, current MBE processes do not cover enough
analysis, and address only a few aspects like scheduling or
behavioral analysis. Still, we note there is a strong intrication
of concerns when dealing with analysis of Cyber-Physical
Systems: physics impose its pace on the system mechanical
behavior or electric state; which impose constraints on signal
integrity (value, capture) and energy; which in turns impact
the hardware platform and thus the software running on it.
The opposite flow also exists: to implement a particular
control function, software imposes constraints on timing,
memory that are to be fulfilled by the underlying system
and environment, and their validation/verification.

In this paper, we review current experiments on the use
of AADL to design CPS, and highlight challenges, threats

and opportunities to support analytical system composition.
Our position is built from multiple experiments conducted
with academic and industrial partners from the last 5 years.

In section II, we briefly introduce Cyber-Physical systems,
listing known issues and building blocks for the design
of CPS. In section III, we introduce the AADL language
and show it is a convenient support for expressing the
architecture of a CPS. In section IV, we provide a com-
prehensive lists of initiatives to provide support for the
engineering of CPS using the AADL. In section V, We
list several challenges for the applicability of Model-Based
Engineering for the design of Cyber-Physical Systems, based
on experiments around AADL.

II. FROM EMBEDDED TO CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems (CPS) has been recently defined
as an extension to typical embedded systems. In the latter,
the emphasis was on the computational elements, with focus
on resource constraints, timing, safety, etc. CPS widen the
scope of concerns to include physical elements, such as the
nature of input/output signals and their effect to the environ-
ment, and more importantly the cooperation of computing
and physical elements, potentially through networks. This is
a significant paradigm shift as it forces tighter cooperation
between separate domains and disciplines.

In this section, we review specificities of CPS, and place
them to typical engineering practice.

The rise of CPS: The integration of physics is not a new
concern, it was also part of most if not all embedded sys-
tems, e.g. control function for planes, automotive electronics,
home appliances, etc. From a computer-perspective, physics
is hidden through the discretization of inputs, command
laws and discrete events. Conversily, the computing power is
hidden behind a set of analogue or digital inputs. Interactions
are limited to a precise set of inputs ranges, values and
timing from well-defined actors.

In [25], the author claims that the key difference be-
tween CPS and classical embedded systems come from
their networked nature, and the new interactions they pro-
pose. Such change in architecting computer-based systems
is actually pervasive in most domains where a processor
is used: consumer electronics, medicine, aeronautics and



Figure 1. System breakdown structure

space domains. Embedded systems moved from basic I/O
manipulation function (e.g. brake-by-wire) to more complex
ones such as aggregating information from sensor networks
on a car to optimize fuel consumption. To some extent, CPS
have the potential to change many aspects of computing [33].

Integration issues in CPS: Actually, it is the integration
of advanced services that makes CPS disruptive. In the same
time, the correct integration of new services is what could
limit them. This integration is many-fold, and follow the
system breakdown structure: sub-systems interacting inside
the system, and the system interacting with its environ-
ment (figure 1) :

• system/environment integration:
– how to carefully manage inputs/outputs? what are

the potential cause of failures/hazards and how
to mitigate them? This covers many dimensions:
electromagnetic compatibility, signal conditioning,
human factors, malicious or adverse behaviors, . . .

– what are the timing constraints of the system?
and how to accommodate systems with multiple
independent discrete clocks?

• system/sub-system integration:
– how to define the boundary of the system blocks?

their interface? their contract in terms of service
required/provided? of non-functional properties?

– what are the characteristics of the hardware plat-
form? the model of computation of the program-
ming language? the constraints of the Real-Time
Operating Systems?

– how to verify, validate, test or qualify sub-systems?
– what is the required granularity to ensure the

correct integration of each block?
• properties determination:

– how to express the properties of the system? what
are the relevant metrics? how to extract information
from the data sheet of basic blocks like CPU or
network interfaces? what is the relevant level of
abstraction for a particular analysis? what to model
in a particular formalism and when to switch to a
particular analysis tools?

– how to evaluate the properties how the system?
what are the cross-dependencies accross layers?
(e.g. impact of energy scaling on CPU perfor-
mances? impact of CPU performances on enerygy?
. . . ). These dependencies shall be tracked so that
once design choices are locked, other parameters
are updated accordingly;

This list cannot be exhaustive, yet it is illustrative of
the many challenges that arise when designing a CPS.
Several workshops gathering the academic and industrial
communities were held to discuss these challenges. This has
been accompanied by a number of projects to study them.

Models as building blocks for CPS engineering:
The agenda for these projects focus on the many required
analysis: performance analysis (scheduling, network anal-
ysis, . . . ), memory and processor (latency, jitter, issues
with cache and pipelines), programming languages (simpler,
smarter, notion of model of computation), formal methods
(breaking limits in scalability of model checking, complexity
of logic formula, notion of time, probability, etc.), etc. Each
analysis rely on a particular abstraction of the system: a
model to be manipulated electronically for better efficiency.

Hence, model-based engineering (MBE) emerged as a
convenient way to build models of systems to ease their
analysis. Several tools have been developed, ECLIPSE be-
ing now the dominant platform, supporting UML and its
companion profiles MARTE [30] and SysML [29] , and the
AADL language [36]. Proprietary tools like SCADE Studio
or Matlab/Simulink are also available. Each tool supports
different formalisms to express a system, and transformation
engines to perform a wide range of analysis (such as
behavioral, timing, safety) and eventually code generation.

The capability to define models and analyze them pave the
way to virtual integration of subsystems and their analysis: a
descriptive model of the system is built; the level of details of
each block, and their interconnection is expressive enough
to perform a complete analysis prior to actually build it.
This allows for early trade-off analysis and detection of
defects in the specifications, functional implementation or
non-functional properties. Such analytic capabilities build
upon existing model processing capabilities, typical analysis
techniques but also requires new innovative frameworks to
address new level of complexities in design. Yet, one can
question whether CPS and MDE are a good match: the
level of maturity of tools, and its inherent complexity poses
several issues to the industrial community. At the same time,
many research projects show that some benefits are at hand.

In the following, we review challenges, threats and oppor-
tunities in the design of CPS from a MDE perspective. We
take as an illustrative example ongoing works performed
around the AADL language. This choice is driven by the
author’s experience, yet most conclusions apply equally to
other modeling languages. We present several areas where
challenges arise: system engineering, applicability of ana-



lytic frameworks, case studies and education.

III. OVERVIEW OF THE AADL

The “Architecture Analysis and Design Language” AADL
is a textual and graphical language for model-based engi-
neering of embedded real-time systems. It has been pub-
lished as an SAE Standard AS-5506A [36]. AADL is used
to design and analyze software and hardware architectures
of embedded real-time systems.

The AADL allows for the description of both software
and hardware parts of a system. It focuses on the definition
of clear block interfaces, and separates the implementations
from these interfaces. It can be expressed using both a
graphical or a textual syntax. From the description of these
blocks, one can build an assembly of blocks that represent
the full system. To take into account the multiple way to
connect components, the AADL defines different connection
patterns: subcomponent, connection, binding.

An AADL model can incorporate non-architectural ele-
ments: embedded or real-time characteristics of the com-
ponents (execution time, memory footprint, . . . ), behavioral
descriptions. Hence it is possible to use AADL as a back-
bone to describe all the aspects of a system. Let us review
all these elements:

An AADL description is made of components. The AADL
standard defines software components (data, thread,
thread group, subprogram, process) and execution plat-
form components (memory, bus, processor, device,
virtual processor, virtual bus) and hybrid compo-
nents (system).

Each Component category describe well identified ele-
ments of the actual architecture, using the same vocabulary
of system or software engineering:

• Subprograms model procedures like in C or Ada.
Threads model the active part of an application (such
as POSIX threads). AADL threads may have multiple
operational modes. Each mode may describe a different
behaviour and property values for the thread. Processes
are memory spaces that contain the threads. Thread
groups are used to create a hierarchy among threads.

• Processors model micro-processors and a minimal op-
erating system (mainly a scheduler). Memories model
hard disks, RAMs, buses model all kinds of networks,
wires, devices model sensors, . . .

• Virtual bus and Virtual processor models “virtual”
hardware components. A virtual bus is a communi-
cation channel on top of a physical bus (e.g. TCP/IP
over Ethernet); a virtual processor denotes a dedicated
scheduling domain inside a processor (e.g. an AR-
INC653 partition running on a processor).

• Unlike other components, Systems do not represent
anything concrete; they combine building blocks to help
structure the description as a set of nested components.

Packages add the notion of namespaces to help struc-
turing the models. Abstracts model partially defined
components, to be refined during the modeling process.

Component declarations have to be instantiated into sub-
components of other components in order to model an archi-
tecture. At the top-level, a system contains all the component
instances. Most components can have subcomponents, so
that an AADL description is hierarchical. A complete AADL
description must provide a top-most level system that will
contain certain kind of components (processor, process, bus,
device, abstract and memory), thus providing the root of the
architecture tree. The architecture in itself is the instantiation
of this system, which is called the root system.

The interface of a component is called component type. It
provides features (e.g. communication ports). Components
communicate one with another by connecting their features.
To a given component type correspond zero or several
implementations. Each of them describe the internals of
the components: subcomponents, connections between those
subcomponents, . . .

An implementation of a thread or a subprogram can
specify call sequences to other subprograms, thus describing
the execution flows in the architecture. Since there can be
different implementations of a given component type, it is
possible to select the actual components to put into the archi-
tecture, without having to change the other components, thus
providing a convenient approach to configure applications.

The AADL defines the notion of properties that can
be attached to most elements (components, connections,
features, . . . ). Properties are typed attributes that specify
constraints or characteristics that apply to the elements of the
architecture: clock frequency of a processor, execution time
of a thread, bandwidth of a bus, . . . Some standard properties
are defined, e.g. for timing aspects; but it is possible to define
new properties for different analysis (e.g. to define particular
security policies).

AADL is a language, with different representations. A
textual representation provides a comprehensive view of
all details of a system, and graphical if one want to hide
some details, and allow for a quick navigation in multiple
dimensions. In the following, we illustrate both notations.
Let us note that AADL can also be expressed as a UML
model following the MARTE profile [13].

The concepts behind AADL are those typical to the
construction of embedded systems, following a component-
based approach: blocks with clear interfaces and properties
are defined, and compose to form the complete system.
Besides, the language is defined by a companion standard
document that documents legality rules for component as-
semblies, its static and execution semantics.

The figure 2 illustrates a complete space system, used as a
demonstrator during the ASSERT project. It illustrates how
software and hardware concerns can be separately developed
and then combined in a complete model.



Figure 2. IST-ASSERT demonstrator

As we mentioned earlier, AADL, or other like MARTE
or EAST-ADL provides similar constructs, and are concep-
tually really closed as underlined in [22]. A natural question
is thus to review missing blocks for Cyber-Physical Systems
Engineering. We discuss this point in the next section.

IV. AADL FOR ENGINEERING CPS

AADL provides interesting features to model Cyber-
Physical Systems, analyze them but also implement them. In
this section, we show that there is currently a good coverage
of support tools to assist CPS designers. Actually, many tools
provide support for AADL1:

• Modeling: TOPCASED [12], OSATE [37], and
Stood [11] provide AADL modeling features for both
textual and graphical variants;

• Model of computation and architectural patterns:
AADLv2 annexes define patterns for supporting IMA
architectures; other initiatives provides patterns for the
Ravenscar computational model [18] or synchronous
languages [42], [28];

• Scheduling analysis: the Fremont toolset [40] and
Cheddar implement AADL performance analysis meth-
ods [38]. Gateways from AADL to the Cheddar and
MAST tools are also available in TASTE;

• Dependability assessment; AADL provides an annex
for modeling propagation of error, to be updated for
AADLv2. Besides, connection with verification tools
has been experimented for instance in the COMPASS
project [5], the ADAPT toolset [35] and RT-Edge [20];

• Security: Patterns have been defined to model MILS
security patterns [10], [19];

• Model optimization: optimization can occur across
several dimensions: number of processors[16], use of
communication buffers [15], allocation of threads to
processors [8];

1An updated list of supporting tools, projects and papers can be found
on the official AADL web site http://www.aadl.info.

• Behavioral analysis: mapping to formal methods and
associated model checkers have been defined for Petri
Nets [34]; BIP [32], [6]; FIACRE [3]; RT-Maude [28];

• Performance analysis: performance of the system can
be evaluated either at the level of generated source
code [17], or from the description of interactions and
I/Os in the system [27];

• Code generation: Ocarina implements Ada and C code
generators for distributed systems [24], a mapping for
RTSJ has been defined in [4]; AADS completes the
range of language to add the hardware description
language System-C [41]. Other initiatives exist to map
AADL to synchronous languages like SIGNAL [26] or
Lustre [21].

Several projects build on the foundations of these AADL
tools to build integrated toolsets: the TASTE toolset driven
by the European Space Agency [7]; the “System Archi-
tecture Virtual Integration” (SAVI) by the Aerospace Vehi-
cle Systems Institute [14] an initiative gathering numerous
key players from the aeronautics domain, and MASIW
developed by the ISPRAS in Russia [23]. These integrated
toolsets have to face many challenges, like the integration
of additional modeling notations like SysML [2], or SCADE
and Simulink [9].

Hence, after more than 10 years of development around
the AADL, and the seminal paper from [1], one can assert
that AADL provides a complete toolbox for designing
Cyber-Physical Systems. Yet, we claim this is partially true,
we develop arguments for challenges, threats and opportuni-
ties to support analytic virtual integration of CPS using the
AADL in the next section.

V. CHALLENGES, THREATS AND OPPORTUNITIES TO
APPLY AADL TO THE DESIGN OF CPS

In the previous section, we presented tools, methods and
processes that support analysis of AADL models. Each
initiative provide a partial solution to evaluate design cor-
rectness from one particular point of view. However, CPS
require the combination of several aspects. This poses many
challenges for the use of AADL for CPS.

A. Heterogeneous models as inputs

Although AADL is perceived by many partners as a
potential solution to represent the system at some point, it
is not the only artifact: one need complementary models to
represent the physical environments (e.g. using Modelica),
but also to design the system itself. For instance, using
SysML for modeling high-level requirements, SCADE or
Simulink for functional modeling. This is a strong require-
ment induced by the heterogeneity of domains, mixing sys-
tem engineering, software/hardware and control/command
concerns that span across the system lifecycle.

In this context, the challenge is two-fold

http://www.aadl.info


• Defining a modeling process that allows a seamless
integration of, and interoperability between formalisms,
and cover concerns of the cyber-physical system under
consideration (mechanical, electrical, software, . . . );

• Enforcing model interoperabililty, both at syntactic (e.g.
refinement of a SysML block diagram as an AADL
component, or integration of a SCADE node as an
AADL entity); and semantics level, to guarantee that
execution assumptions (model of time, propagation of
events, data flow, properties) match across levels.

Should this challenge be solved, this would greatly ease
communication across teams, each of which using its own
reference tools, while allowing seamless models exchange.

Yet, the threat is that, as of today, both the modeling
process and semantic interoperability remains open issues;
syntactic interoperability being partly addressed in [9].
Hence, walls still exist between domains.

B. Heterogeneous models as outputs

The diversity in AADL model processing tools (for-
malisms, development approach, coverage of the language).

As part of the Ocarina project, we developed many
AADL processing tools, targeting code generation, schedul-
ing, model checking, WCET analysis. We took advantage
of knowledge of code generation patterns enforced in our
first Ada backend to enforce the same modeling patterns as
inputs, and generate equivalent runtime systems.

This initiative remained isolated. Many other processing
tools exist, hence raising the following challenges:

• Coverage of the modeling patterns: AADL is quite gen-
eral and allows the expression of one pattern in multiple
ways. Model processor usually perform a visitor pattern
to map entities onto the destination formalism. Hence,
one pattern may not be recognized by a particular tool.
This could either trigger an error, or produce an output
that does not reproduce all initial model elements;

• Compatibility of the outputs: how to compare the fi-
delity of results, and ensuring tat the correct tool is used
for the correct analysis? For instance, authors in [39]
illustrate how complex it is to select and implement the
correct test for scheduling analysis.

Here, threat and opportunty are dual: more analysis imply
more confidence in the system, yet inconsistent results –
if detected – reduce confidence in the whole modeling
process. A significant effort should be put on qualifying
model processor so as to assert that they do not induce false
or inconsistent results. Furthermore, the combination of tools
should be evaluated: a set of guidelines shall be established
to ensure consistencies in analysis.

C. Library of models

Rich and descriptive models are required to feed all
analysis. AADL proposes a rich property mechanisms, with
pre-defined properties and the capability to define new ones.

Yet, we note the following:
• there is no public repository of models reusable for

typical blocks: e.g. a x86 processor, an ethernet net-
work, FFT or PID building blocks, product lines, etc.
Such description should be expressive enough to cover
a wide range of analysis: e.g. behavior of a network
device, power consumption of a CPU, etc.

• the coverage of default property sets is not complete,
and different property sets have been defined separately
to cover similar concerns.

These challenges are recurrent in the whole MBE com-
munity: we note a great emphasis has been put on defining
modeling notations and tools. Yet, limited efforts have been
defined to build a library of models, as we can see for
instance in EDA tools.

Still, these blocks are required to perform high-fidelity
analysis. Lack of model availability diverts engineers from
MBE. Besides, one can note that many elements are not
confidential, and could definitely be defined as part of a
community-driven effort.

D. Training and Education

CPS and MBE tool support have the capability to shift
engineers focus from implementation activities to system
or functional definition of CPS. This is one of the key
driver of the TASTE toolset in which we are involved
with ESA and its partners: intensive code generation from
heterogeneous functional models (SDL, SCADE, Simulink),
integrated as AADL subprograms in an AADL architectural
model provides a rapid prototyping platform for CPS. One
may then focus on the system architecture and its non-
functional properties, and how to validate/verify them.

Hence, engineers do not need to devote time to manual
code integration. This raises some interesting questions
regarding training and education of engineers.

At ISAE, our focus in on the education of engineers for
the aeronautics and space domains. The challenge we face
regularly is to upgrade our curriculum to match new design
techniques, while preserving enough theoretical knowledge
to master all steps that would be automated by a MDE
toolchain for CPS. Yet, there is a temptation to reduce the
amount of training and focus only on tools as a user, and
trust the toolset to perform all analysis.

Discussion from the previous sections discourage us for
taking such path: system must be mastered in all their
dimensions. This requires actually a more intensive and
combined training to know what to model, how to model
and finally how to analyze it. Hence, engineering of Cyber-
Physical Systems should focus more on system engineering,
while Embedded Systems focus is on low-level design and
implementation. Yet, it is unclear whether training in CPS
is an extension to, or a different curriculum to Embedded
System curricula.



E. Tailoring both modeling and analysis processes

MBE, and more specifically UML, taught us to model
systems, and encourage us to define our own modeling
process and to tailor it to the company business logic. We
claim that modeling has a limited value if it is not backed by
a verification process. AADL proposes a full set of analysis
for supporting V&V. The Challenge here is many-fold:

• define boundaries between modeling and verification
activities: when is a model complete enough for a
particular validation? how to avoid overhead or con-
tradiction in specifications?

• combine verification activities efficiently: the output of
one tool may be the input of another, e.g. combining
WCET and scheduling analysis; security and safety
analysis. Dependencies between analysis must be traced
so that model modifications will reduce verification
activities to the analysis impacted by this change;

• qualify a dedicated process to match normative con-
straints; e.g. in the context of the MBE supplement to
the DO-178C for developing avionics systems.

This challenge requires a particular understanding of
analysis methods, the modeling notation (syntax, semantics,
modeling pattern for analysis) and the system under consid-
eration. A combined modeling and analysis process has the
opportunity to reduce the complexity of designing a CPS.
Existing tools around the AADL already allow for particular
virtual integration of components and their analysis for
one class of properties. This must be extended to multiple
dimensions to cope with requirements for CPS.

This is perhaps the biggest threat to the applicability of
model-based notations such as the AADL for the design
of CPS: the current lack of integrated toolset, combining
efficient model manipulation and V&V tool in a seamless
process is a show stopper for many practitioners from the
industry. The OPEES project (“Open Platform for the En-
gineering of Embedded Systems” – http://www.opees.org/)
aims at defining not only such a platform, but also the
ecosystem of companies that would make it a living com-
munity that enriches the set of tools required for CPS. Yet,
this is to be confirmed by its partners.

VI. CONCLUSION

Cyber-Physical Systems requirements impose a radical
shift in the way embedded systems are designed: one need
to integrate several heterogeneous domains to support all de-
sign activities, from early requirement elicitation to detailed
design, implementation and qualification activities.

In the mean time, several projects explored the applica-
tions of Model-Based Engineering to the design of CPS,
covering most of these activities.

In this position paper, we advocated that the use of model-
based engineering is not a solution, but rather an option to
help designers. Taking AADL as a candidate to design CPS,

we provided a comprehensive (yet partial and incomplete)
list of projects that propose analysis of AADL models. We
have shown that the scope of concerns covered by the AADL
is quite large. Several projects demonstrated the feasibility
of virtual integration of AADL building blocks for designing
large systems.

We note that most of these initiatives follow a problem-
centric view of the design of CPS, providing partial solu-
tions to well-defined problems, e.g. to assess schedulability,
dependability, performance, etc. Yet, CPS requires a tight
interaction between domains.

We defined several challenges to be addressed by model-
based and the AADL community to enable such interaction:

• support wider interoperability between heterogeneous
model notations, at syntactic and semantics levels;

• define model patterns for combined analysis, allowing
one single source model to be analyzed by several tools;

• publish a library of reusable models, to serve as basic
building blocks for new designs;

• support training and education of CPS designer, to
master inherent complexity of the modeling framework
and associated tools;

• tailor of the modeling and verification processes to
match project requirements.

These challenges are associated to many research oppor-
tunities and threats. We claim that these five challenges shall
be addressed together to actually build a cyber-physical sys-
tem around models, and transition from reseach to industry.
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Abstract—When developing complex solutions with the
AUTOSAR standard, the integration of components delivered
from different suppliers is a crucial step. While the upfront
agreement on syntactical interfaces can ensure syntactical
conformance, other aspects such as timing or resource con-
sumption have to be addressed rather late during integration
and often require that the suppliers release IP relevant details.
In this paper, we propose a first step to overcome this problem.
We show how automated abstraction and checks can be applied
to derive abstract timed interfaces for AUTOSAR ports from
timed models of the component, which hide the IP relevant
details while still providing enough information to exclude any
invalid behavior when properly integrated.

I. INTRODUCTION

Most innovations in the automotive domain are currently
realized by software resulting in a dramatically increasing
complexity of the developed systems. The AUTomotive
Open System ARchitecture (AUTOSAR) framework has
been established by car manufacturers (OEMs) as well as
suppliers to deal with this complexity at the architectural
level. In AUTOSAR, so-called software components (SWCs)
are used to support a modular development approach for
individual software parts. This modular approach supports
the integration of software from different stakeholders with-
out disclosing implementation details and, thus, allowing
to protect intellectual property (IP).1 AUTOSAR facilitates
the parallel development of individual SWCs that can be
integrated into the overall system later on based only on
their interfaces (cf. [1]).

However, on the one hand, modularity helps to cope with
the complexity and IP problem during development but,
on the other hand, new problems during the component
integration arise. While AUTOSAR supports well defined
interfaces for syntactical aspects to allow such a modular
development process, the standard only offers a timing
profile for non-functional and timing aspects to specify
required or guaranteed behavior [2, 3], but no concept for
modular specification. Consequently, existing timing ana-
lysis approaches for an AUTOSAR compliant architecture
like [4] do not fully preserve the modularity of SWCs.
Internal details like execution times of functionality included

1In the automotive domain, OEMs as well as suppliers are unwilling to
provide insights into internal details related to intellectual property.

in SWCs, execution orders, and dependencies concerning the
data flow need to be available. Such details are often relevant
for the implementation and, thus, object of IP. Furthermore,
the analysis of timing properties has to be done on the overall
system and not in a modular fashion.

In this work, we employ timed automata (TA) to inves-
tigate how to derive a timed interface description from the
timed component model, which, on the one hand, supports
abstraction for protecting IP and, on the other hand, permits
to exclude that necessary local properties of the SWC
like deadlock freedom or end-to-end timing constraints are
compromised when integrated. For deriving an interface we
apply abstraction like proposed in [5] on the timed model
describing the SWC. Furthermore, a check is presented that
reports a counterexample for a necessary local property in
case the interface cannot guarantee them.

Figure 1: Steps of the approach and used models.

The approach consists of the following steps (see also
Figure 1): (1) A TA for the timed behavior of the SWC is
modeled that also considers configuration parameters related
to the execution environment such as periods and execution
orders of the functionality included in the SWC. (2) Then,
we apply abstraction according to [5] to derive the desired
abstract interface. The goal is to derive an interface that only
provides interaction schemes that lead to a valid behavior of
the SWC. (3) Because step 2 cannot guarantee by construc-
tion that all necessary information has been preserved, we
outline how the derived interface can be checked against the
original detailed TA model to decide whether the resulting
interface only defines interactions leading to a valid state of
the initial SWC. In case step 3 reports a counterexample,
we have to rerun step 2 guided by the counterexample until



a valid abstraction is found.
The paper is organized as follow: In Section II we briefly

introduce the application example of a SWC for controlling
a mobile robot. Subsequently, in Section III, we show how a
TA model is derived in step 1, which describes the possible
behavior of the previously introduced SWC. In Section IV,
we apply the abstraction step 2 on the created TA model
according to [5] and derive the desired abstract interface.
In Section V, we investigate how we can check in step
3 whether the resulting interface only defines interactions
leading to a valid valid behavior defined by the initial
SWC based on the derived interface in combination with
the original detailed TA model. The paper closes with a
discussion of related work and a final conclusion.

II. APPLICATION EXAMPLE: MOBILE ROBOT

We built an AUTOSAR conform software architecture for
the Robotino robot (http://www.robotino.com). The robot
provides different types of sensor and actuator units. In
the following example, only two of them are required to
realize a feedback loop. The first type exists in the form of
three drive units, realizing an omni-directional drive, which
allows driving in any direction. Each drive unit consists of
an actuator in the form of an electric motor as well as of a
sensor in the form of an incremental encoder for measuring
the actual rounds per minute of each motor. The second
sensor type is provided in the form of distance sensors,
which are able to measure the actual distance to obstacles.

A tool chain has been realized, including an ex-
isting real-time operating system (RTAI Linux, see
https://www.rtai.org), which allows developing software ac-
cording to the AUTOSAR standard. In this tool chain,
we use MATLAB/Simulink (http://www.mathworks.com)
to develop the control functions in combination with
TargetLink for code generation as well as SystemDesk
(http://www.dspace.com) for modeling, simulation, and gen-
eration of the AUTOSAR architecture. While conformance
tests of syntactical aspects of interfaces are supported by
the tool chain, this is not the case for timing aspects. The
tool chain is used for an AUTOSAR conform development
process and a more detailed description can be found in [6].

DriveLogic

SendOmniPort

OmniDrive

Latency Constraint  x <= 10

SensorActuatorProcessing

UpdateSensors

[2-4]ms[1-3]ms

SendSensor-
ValuesPortReceiveOmniPort

ReceiveSensor-
ValuesPort

SetDesired-
Speed

getSenorValuesPortsetActuatorValuesPort

Figure 2: The two AUTOSAR SWCs for con-
trolling the robot.

Like depicted in Figure 2, we use two SWCs SensorActu-
atorProcessing and DriveLogic in our application example,
while only the first is described concerning its internal
details. Such AUTOSAR SWCs communicate over ports
with other SWCs, e.g., by reading or writing data values
from or to such a port. The SWC at the top of Figure 2
exchanges signals via a sender-receiver port (triangle ports)
as well applies function calls on service ports (rounded
ones). Service ports provide functions from other SWCs.
In AUTOSAR, a communication interface associated with a
port describes, e.g., the type of messages, which can be sent
or received using the port.

Furthermore, the internal behavior of the SensorActu-
atorProcessing SWC is modeled via the two Runnables
OmniDrive and UpdateSensors. Runnables in AUTOSAR
represent implementations, e.g., provided in the form of C-
functions. The former Runnable reads the desired movement
speed of the DriveLogic component and sets appropriate
control commands to the actuators by using a service port.
The latter reads the actual sensor data and sends them back
to the DriveLogic SWC.

Additionally, Figure 2 shows some non-functional prop-
erties like an end-to-end latency constraint and the worst
case (WCET) respectively best case execution times (BCET)
of the Runnables.2 The latency constraint requires that the
time interval between an ingoing drive command and the
point in time until actual sensor values are sent to the
SendSensorValuesPort port, always needs to be smaller or
equal to 10 ms. In addition, we claim that always both
Runnables have to be executed in the same order and with
a period of 10 ms.3

More information about the AUTOSAR standard and the
semantics of the used component model can be found on the
official website (http://www.autosar.org). In the next section,
we derive a TA model representing the resulting behavior
including timing aspects for the SWC SensorActuatorPro-
cessing.

III. STATE-BASED BEHAVIOR MODELS

In the following, we create a set of TA reflecting all
information available in the current state of the development
process from the perspective of the stakeholder developing
the SWC SensorActuatorProcessing. Therefore, we can as-
sume a white box view with available information about
Runnables, execution orders, worst case, and best case
execution times. In the present work, the TA model is
created manually while for future work we are planning to
investigate how an automatic derivation of the model can be

2Execution times are derived based on the C-functions associated with
the Runnables. The required time for calling the functions provided by the
service ports are included in the WCET/BCETs. For more accurate values
also WCET analyzers can be potentially used.

3The required periodical execution is derived on the physical model
(possible movement speed in combination with the distance sensor range)
and is realized later on by the configuration in the form of modeled tasks.



Figure 3: Automaton representing the abstract SWC.

achieved based on a given white box view. In Definition III.1
the formal semantics of the used timed automata model are
given. For more information concerning TA cf. [7, 8].

Definition III.1 A timed-automaton A is a 6-Tuple A :�
pΣ,S,S0, X, I, T q, where Σ is the finite set of input and
output signals including τ P Σ representing an empty signal,
S is a finite set of locations, S0 � S the initial location,
X :� px1, .., xnq a finite set of clock variables with xi ¥ 0,
I a function I Ñ CpXq, which assigns to each location
a set of equations about clock variables called invariants
and T is the set of transitions. CpXq is a set of conditions
about the clock variables of X . CpXq consists of a set of
equations of the form xi   c _ c   xi, while   rather is
  or ¤ and c P N�. T is the set of transitions of the form:
T � S�Σ�CpXq�2X�S . A transition from location s to
s1 is defined via the tuple ps, a, ϕ, λ, s1q, where a P Σ is the
signal sent or received by the associated edge, which need
to be sent or received by at least one other timed-automaton
and ϕ is a set of constraints which need to be fulfilled as
a precondition to trigger a transition. Each ϕi P ϕ is a
constraint over clock variables of the form xi   c_ c   xi,
while   rather is   or ¤ with c P N�. λ � X is a set of
clock variables that are reset to the value 0 in the case the
transition is triggered.

The SensorActuatorProcessing SWC at the top of Figure 2
provides two Runnables. The first one consumes an event
that has been written from another SWC into a buffer. The
second Runnable writes an event to a buffer, which can
be read by another SWC. Each Runnable is transformed
into one TA location.4 Accordingly, the automaton has a
R Omni (RO) and R UpdateSensors (RU) location. The
resulting automaton including timing information is shown
in Figure 3. For a better understanding, we have numbered
the locations of the following TA, thus, each location has an
assigned number allowing to reference locations based on
it.

The BCET and WCET of each Runnable are reflected by
an invariant defined for the corresponding location (e.g. exec
 � 4 in location 5) and a guard condition for leaving this
location (e.g. exec ¡� 2 at transition 5 Ñ 6).

Each Runnable can be triggered by one or multiple OS
tasks in an arbitrary order. This trigger is modeled as a
start signal, which leads to a state change in the TA from

4One location for each Runnable with timing information is sufficient
to apply a timing analysis. Each single location can be split into multiple,
e.g., if the behavior of the Runnable is known in more detail.

a waiting to a ready location (cf. transition 0 Ñ 1 and
3 Ñ 4). After triggering, each Runnable starts immediately
with its execution and notifies the task about completion via
a done signal. The execution order of the Runnables can be
different, depending on the order in which they are mapped
to an OS task. One argument for including alternatives for
the later implementation is to investigate whether execution
orders have impact on timing properties. Therefore, alter-
nating execution orders exist due to abstraction and are
normally removed during development. The automaton in
Figure 3 shows only one possible execution trace (Runnable
RO is always executed before RU) to keep the model more
compact and allow a better understanding.

AUTOSAR events are mapped to signals in the TA using
synchronous channels. In the example, RO reads an event
commands immediately after activation and processes the
data afterwards. Furthermore, RU sends an update event
after execution. Of course, both Runnables can read/send the
event at every point in time during their execution. There-
fore, the mapping is an approximation, which guarantees the
availability of all needed events before, respectively after, the
execution of a Runnable.

We can summarize the mapping of an AUTOSAR SWC to
a TA as follows: each Runnable must be activated by a start
signal from a task. It becomes ready and consumes/reads
appropriate data from the input buffer (e.g. transition 1 Ñ 2)
and immediately starts execution. The last activity in the
execution step is writing the output signal to a buffer (e.g.
transition 5 Ñ 6) and sending the done signal to the task.

The triggering of the Runnables inside an AUTOSAR
SWC by OS tasks is crucial for the overall timing. Thus,
tasks are also considered in our model at an abstract level.
The tasks can be understood as a contract that needs to be
considered when the SWC is integrated into a system later
on. For our application example, the artifacts resulting from
the Runnables (e.g., the resulting binaries when compiling
and linking the C-Functions associated with the Runnables)
need to be scheduled later on as defined by the tasks.

To preserve abstraction, the task description does not
define exact start and end points. This allows the usage of
the SWC in several different systems. Therefore, we create
two TA representing two abstract task descriptions, which
provide scheduling information. Each task (cf. Figure 4)
consists of an initial (0) and ready (1) location. The task can
leave the initial location if the CPU resource (modeled as a
Boolean guard) is available and if the execution is permitted
concerning the actual time slice of the overall period. Like



Figure 4: A corresponding task automaton of the
OS configuration/contract.

shown in Figure 4, the time slice is defined to be within
zero and two time units (ms) of each 10 ms period.

In the ready location, the task immediately (without
consuming time, modeled in the form of an urgent location)
activates the corresponding Runnable via a start signal (cf.
transition 1 Ñ 2). It waits until the Runnable indicates
its completion by a done signal (see also Figure 3). If a
task triggers more than one Runnable, the next Runnable is
started immediately afterwards. In the end, the task releases
the CPU resource and waits until the period is over.

We choose the configuration parameters as follows: two
tasks are executed within a period of 10ms. The first task
is executed in the first time slot of 5ms at the beginning of
the period. Due to the WCET of the Runnable (cf. Fig. 3
loc. 2), it must be in the Ready location at least 2ms after
the beginning of each period (10ms). The second task is
executed within the second half of the period and must
be activated at least 4ms before the period is over. The
AUTOSAR OS provides mechanisms for the triggering of
OS tasks based on a period as well as a first absolute
activation time via so-called OS alarms. Thus, the described
task configuration can be implemented in an AUTOSAR
conform system later on.

AUTOSAR allows different forms of exchanging data
with synchronous or asynchronous communication. In
this work, we focus on asynchronous communication via
buffered events. Accordingly, for each event that is provided
or required by a port, we need to model the buffer explicitly.
The TA in Figure 5(a) represents the buffer for the command
event, which is received by the ReceiveOmniPort (cf. Fig. 2)
and processed by the Runnable RO. Each buffer has a size
of one.5 The Runnable can process exactly one command
signal after receiving it from the environment, e.g., from
another SWC. If such a signal is sent or processed twice, an
error variable is set to true indicating an invalid state of the
SWC. To be able to explore the state space of the created TA
model, we also need a representation of the environment, or
in other words someone needs to send respectively consume
signals from/to the SWC (the buffer). Because we want
restrict the possible behavior for the SWC in any way, we
create the most generic environment that can exist. Such

5It is also possible to model buffers of different size but the used
application example of the robot requires buffers of size one.

an environment is able to send/receive a signal from/to the
SWC in each and every state. The only restriction we made
is that such a signal can be sent on a single-core CPU, like
in the case of the robot, only if the corresponding resource
(CPU) is available. The resulting TA representing such a
generic environment is shown in Figure 5(b).

(a) Buffer for signal A. (b) Input Au-
tomata.

Figure 5: Automata representing the input buffer and
the generic environment for the commands event.

IV. TIMED-INTERFACE AUTOMATA

Now we are interested in deriving a behavior descrip-
tion that defines those interactions valid with the SWC
while hiding internal details, e.g., the number of existing
Runnables, dependencies concerning the data flow or esti-
mated execution times of individual Runnables. We need to
remove those details that are object of IP or that hinder a
modular development process. For this purpose, we proceed
as follows: (1) we create the full state space of the SWC,
(2) we transfer the derived state space to an initial (not
abstract) interface, and (3) we apply abstraction and derive
an interface that reflects those traces of the SWC, which can
be observed on the externally visible elements only.

In the first step, the basic idea is to explore the overall
state space. For this purpose, we give a definition of a
labeled transition system (LTS) that represents traces of one
or multiple TA. This definition includes the formal construct
of so-called clockzones, which are able to represent the
symbolic representation of valid evaluations of clocks when
one or multiple TA are in a specific global state.

Definition IV.1 A Clockzone Z consists of a set X of clock
variables xi. Each xi can take values of R� Y 0, while
i P N� and i ¡ 0. Additionally, a constant exists in the
form of the clock x0 with the value 0 as well as a set of
constraints c P C in the form of equations xj   d, d   xj
or xi � xj   d, with i, j P N�, d P Z and  P t ,¤u. The
clockzone is the result of the conjunction of all constraints
that are given by C.

Definition IV.2 A labeled transition system representing
sequences over the parallel construct of multiple timed-
automata A0 ‖ ... ‖ An consists of the tuple Lp :�
pΣp, Qp, Qp0, X

p, T pq where Σp is the set of input and output
signals including all signals of A0...An, Xp is the set of
clock variables included in A0...An, and T p is the set of
transitions of the form T p � Qp�Σp�Qp. Each q P Qp is
a tuple q :� psp, zpq representing the states of all parallel



automata A0 ‖ ... ‖ An with sp � Q0 � ...�Qn where Qi
with i from 0 to n represents the locations of the automata
Ai. zp is the clockzone for a single state consisting of the
union over all clock variables X0 Y ... YXi with Xi from
automaton Ai and the possible clock assignments in this
state. A transition from state q to q1 with q, q1 P Qp is defined
via the tuple pq, a, ϕ, λ, q1q, where a P Σp is a signal, which
needs to be sent or received by the timed-automata, ϕ is
a set of constraints, and ϕi P ϕ is a constraint over clock
variables of the form xi   c_ c   xi, while   rather is  
or ¤, xi P Xp and c P N�. λ � Xp is a set of clocks that
are reseted during the transition.

Due to the number of states resulting from a full state
space exploration of our example application, to allow a bet-
ter understanding as well as a more compact representation,
we derive only one symbolic trace. It is described in the form
of a LTS. For this purpose, we use the simulation capabilities
provided by the UPPAAL tool. It allows us to explore the
state space step-by-step and to manually choose between
possible alternatives during exploration.6 The result of such
a simulation in UPPAAL is a symbolic trace representing a
subset of the overall state space. We start the simulation with
all involved TA in their initial location. At the beginning,
the automaton representing task 1 (see Figure 4) switches
within two time units to location Ready and the resource of
the CPU is occupied. Because Ready is an urgent location
and, thus, time is not allowed to pass. Task 1 switches
immediately to its only successor location and triggers the
execution of the associated Runnable represented by location
R Omni of the SWC (cf. Figure 3) via the start R Omni
signal. As a result, the value of the input buffer is read and
the TA shown in Figure 5(a) switches to the location on
the left, representing an empty buffer, respectively a buffer
allowed to be overwritten. The SWC as well as task 1
switch simultaneously to their individual successor locations
synchronized via the signal done R Omni. Because task 1
is again in an urgent location and no other transition in
the TA model is enabled, it switches to location Waiting
and the resource of the CPU becomes available. From this
global state, we write a new value on the buffer and the TA
of Figure 5(a) switches back to its initial location. During
the above described simulation an error state has not been
reached.

The observable behavior during the above described sim-
ulation in UPPAAL is a subset of the full state space and,
thus, can also be represented in the form of an LTS. Due
to space limitations, we do not show the parallel construct
of all involved TA models shown in the Figures 3, 4 and
5. Instead, we encode each location of the involved TA as
follows: Each individual TA has a set of locations, each
numbered like shown in Figure 5(a) where the location on

6For more information about UPPAAL and the provided simulator
see [9].

the left has index 1 and the location on the right has index
0. We represent the overall state of the parallel construct
by encoding each location in the form of a value vector.
The dimension of the vector is equal to the number of TA
included in the parallel composition. Each position in the
vector represents the current location of exactly one TA,
e.g., the current location of the TA of the SWC shown in
Figure 3 is reflected by the value at the first position of the
vector, the location of the TA representing task 1 is stored
on the second position, and the location of the input buffer
on the third position. Due to the fact that all remaining TA
stay in the same location (initial location) during the whole
simulation, only a vector of dimension three is shown in
Figure 6.

The first location of the automaton shown on the left of
Figure 6 depicts the starting point of the previously described
simulation where all involved TA stay in their initial location
(index 0). The shown automaton represents a cutout of the
LTS Lp representing the overall state space of the SWC.
Thus, we are able to encode and visualize the discrete part
of the global state LP in a much more compact form. The
discrete part sp of a state q P Qp with q :� psp, zpq
of the LTS Lp is described by such a vector and the
continuous part zp is defined by the possible clock valuations
observable during simulation. The valid clock valuations are
directly taken from the UPPAAL simulator representing the
continuous part zp. Guards, clock resets, urgent locations as
well as sent signals are simply taken from the transitions of
the TA model observed during simulation. Thus, the first
state q0 of the resulting LTS derived by the simulation
consists of the discrete part sp0 � 0, 0, 0, the continuous
part zp0 � z0, with z0 being the clockzone including
constraints: period T1 ¥ 0 ^ period T1 ¤ 2 ^ exec ¥
0 ^ exec ¤ 2 ^ period T1 ¤ exec ^ period T ¥ exec.
Sent or received signals, clock resets, and guards are taken
from the simulation results accordingly.

After deriving the (partial) state space, we proceed with
step two (2) and transform the created LTS to an initial
interface. We start with an empty interface in the form of the
TA TI

1

:� pΣ
1

,S 1

,S0
1

, X
1

, I
1

, T
1

q. For each state qi P Qp

of the derived LTS with qi :� pspi, s
z
iq, we define a copy si

of the discrete part spi with the staying condition (as well as
all outgoing transition guards) restricted to their intersection
with szi. We add each si to the set S 1

, the resulting staying
condition to the function I

1

and the transition including the
derived guards to T

1

accordingly. Transitions and states that
become empty during this procedure are removed. For the
simulated trace shown in Figure 6, we only need to transform
the shown constraints on the possible clock valuations to
appropriate invariants for the resulting locations.7

7Several internal signals sent between constituent parts of the SWC
observable during simulation are not shown in Figure 6 to allow a better
understanding. In any case, these signals will be removed, at latest during
the following described abstraction mechanism.
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Figure 6: The symbolic trace derived by the UPPAAL simulator.

After deriving the initial interface, we need to hide those
information not observable on the interface. We proceed with
the third step (3) by applying abstraction according to [5].
In [5] the authors describe how an abstract representation
of the timed input/output behavior is derived by hiding all
internal clocks, variables, signals and so on, based on the
behavior from the perspective of a white box view.

As a result, for our example only that information which is
associated with the configuration or which can be observed
from outside of the component is allowed to be preserved.
This is the case for the clock that measures the defined
period (assuming the period to be known). The following
applied abstraction mechanism is sketched in listing 1: The
procedure deriveAbstractInterface takes the input TI

1

representing the full and not abstract interface, the set OS
representing the observable signals, and OC representing the
observable clocks. At first, the procedure iterates over all
transitions of the interface (line 7) and removes all signals
from the transitions that are not element of OS (line 9).
Second, the procedure projects all constraints included in
the guards of each transition on the remaining clocks, which
are element of OC (line 12-16). Further, it removes all clock
resets of clocks not in OC (line 18-22). In the next step, the
procedure iterates over all states respectively locations (line
25). It takes the set of invariants assigned to each location
via the function I

1

and projects the included constraints
(invariants) on the remaining clocks of OC (see line 26).
The last step (line 29) assigns only the observable clocks to
the TA.

The projection used in line 14 and 26 works as follows:
Assume we have two constraints of the form 1 ¤ c1 ¤
2 ^ 1 ¤ c1 � c2 ¤ 2 with the two clocks c1 P OC and
c2 R OC. Removing clock c2 and projecting the constraints
on c1 results in the constraint 2 ¤ c1 ¤ 4. For more
details concerning the abstraction as well as the projection
compare [5].

Now we apply the above sketched abstraction mechanism
on the example taken from UPPAAL. In location 0, 0, 0 of
the automaton shown in Figure 6 all clocks have the same
value but only clock period T is externally visible. Thus,
the clock exec can be removed and existing constraints are
projected on the remaining clocks. The same holds for the
location 0, 1, 0.

Listing 1: Derivation of abstract interface
1 procedure deriveAbstractInterface()

2 parameter: TI
1

//Initial interface
3 ,OS//Observable signals
4 ,OC//Observable clocks
5

6 //Remove internal signals

7 foreach t P T
1

with t :� pq, a, ϕ, λ, q1q do//For each transition
8 if a R OS do//Signal not observable
9 removeSignal a

10 endif
11 //Project guards
12 foreach ϕi P ϕ do//For each guard
13 if ’guard includes not observable clock’ do
14 projectGuards
15 endif
16 endforeach
17 //Remove clock resets
18 foreach λi P λ do//For each clock reset
19 if ’reset includes not observable clock’ do
20 removeReset
21 endif
22 endforeach
23 endforeach
24 //Project invariants

25 foreach s P S
1

do

26 project invariants of I
1

psq on remaining clocks
27 endforeach
28 //Assign observable clocks

29 X
1

� OC

Additionally, we can collapse the resulting TA, e.g., the
possible clock valuations in location 0, 0, 0 in conjunction
with the guard of the outgoing transition allow exactly the
same clock valuations as possible in the only successor
location 0, 1, 0. Thus, we are able to collapse locations
resulting in the automaton shown in Figure 7. For a complete
description of the above sketched derivation of a interface,
the applied abstraction mechanism as well as the reduction
see [5].

Figure 7: Reduced abstract trace.

V. CONFORMANCE BETWEEN INTERFACE AND SWC

It can be seen that the derived interface of Figure 7 on
its own is not closed anymore, due to the fact that the
emitted signal write commands needs to be consumed to
take the transition. This is the case because the buffer,
which consumes the signal, is part of the SWC and has
been removed during abstraction. Again, we have a similar
problem like already described in Section III where we



have created the generic environment. There, we needed a
representation for the environment that is able to produce
signals that can be consumed by the SWC. Now we have
derived an interface TI

1

that defines, which signals can be
sent from the environment to the SWC. Accordingly, we
need a component consuming the signal. Thus, we create an
abstract representation of the black box SWC SWCg (see
Figure 8), which is able to consume the signals provided by
the interface TI

1

in each and every state.

Figure 8: The abstract
representation of the
black box SWC SWCg .

For being able to rea-
son whether the compo-
sition with other SWCs
leads to a valid behav-
ior,8 TI

1

shall be such
that it can be used as an
oracle. It provides only
traces, which are valid in
combination with the black box SWC in any case. In
other words, the derived interface automaton in parallel
with the most generic SWC is not allowed to provide
interaction schemes, which potentially lead to a violation of
the previously validated properties, like deadlock freedom,
absence of error states, and required response times. For
this purpose, we create the oracle in the form of the parallel
product like sketched at the bottom of Figure 1 consisting
of TI

1 ‖ Configuration ‖ SWCg . The configuration is
represented in the form of the task shown in Figure 4.

We call ORA the set of all possible traces observable
on the oracle. Assuming that we are able to divide all
possible behavior of the original SWC (considered as a
white box) into two different sets, the first V AL representing
valid behavior and the second INV AL representing invalid
behavior, we can define more formally what is not allowed
in relation between the traces of the SWC and those of the
oracle:
 Dti P ORA, tj P INV AL : ti � tjæαpORAq

In other words, if we are able to find a trace in the oracle
that leads to an invalid state of the real SWC, the traces
defined by the oracle (the interface) are not safe.

The restriction operator æ on an alphabet αpaq is defined
as follows: Applied on trace t it removes all actions, like
signals, that are not in the given alphabet of a, where a can
be a TA. Thus, we take trace t, consisting of multiple actions
pe0, d0q...pen, dnq, where ei represents an signal and di the
point in time on which the signal has been sent, and remove
all actions from t that are not included in the alphabet of a.

We use the UPPAAL model checker again for a slightly
modified model:

We create the parallel construct of the interface TI
1

, with
the original SWC, the configuration as well as a slightly
modified form of the generic SWC. We add an additional

8In our application example, we have derived the LTS based on valid
traces only.

location to the generic SWC, which is a committed location.9

Thus, the generic SWC in parallel with the interface TI
1

creates the same set of traces compared to the generic SWC
shown in Figure 8. Now we investigate whether all signals
consumed by the generic (abstract) SWC can be consumed
in the same way by the original (white box) SWC. For this
purpose, we send a signal write commands 2 to the SWC
each time the modified generic SWC has decided to receive
signal write commands from TI

1

. Accordingly, the SWC
is forced to receive the signal at the same point in time
when the oracle is able to produce an signal, or in other
words all signals generated by the oracle are instantaneously
forwarded to the (white box) SWC.

write_commands_2?

write_commands!

cpu_resourceInitial

Figure 9: The modified
generic SWC.

Now, we can apply
the same checks in the
UPPAAL verifier, which
we previously applied on
the SWC in combination
with the generic environ-
ment. If we are able to
find an example where at least one property is violated, we
have found a witness for the previously formally defined
case and, thus, the desired modularity is not guaranteed
when using the interface. If we are not able to find such
a violation and all traces derived on the oracle are still valid
for the SWC, we know that a trace like defined above does
not exist and the SWC can be used in a fully modular fashion
as a black box using TI

1

.

Figure 10: Reached counterexample in UPPAAL.

For our application example, we apply the described check
for the derived automaton shown in Figure 7 representing a
fragment of the state space of the interface TI

1

. We ask
the UPPAAL model checker whether a deadlock or an error
state is reachable within six time units (the time period for
which the fragment describes the derived valid interactions
taken from the UPPAAL simulator). As a result UPPAAL
creates a witness in the form of a trace where the input

9A committed location in UPPAAL need to be left in the next step.



buffer is overwritten in the time interval between 1 and 2
time units. The associated state as well as the possible clock
valuations are shown in Figure 10. Because the variable
BufferIn.error has the value 1, representing an error state,
we have found a witness indicating that we are not able
to use the SWC as black box based on the given interface
only. This is the case because the considered fragment of
the interface already contains a trace leading to an error
state. Within our application example we have been able
to remove interaction schemes from the interface based on
the shown counter examples derived by the UPPAAL model
checker. Several different possibilities exist for removing
such invalid interactions schemes from the interface, e.g.,
changing configuration parameters of the OS tasks or simply
restricting the interface by removing traces. Nevertheless,
each time changes are applied, e.g., on the configuration,
we need to derive the new interface description and, thus,
also need to reapply the activities described in Sections IV
and V.

VI. CONCLUSION AND RELATED WORK

We have shown the technical feasibility of deriving a TA
model from a white box view of an AUTOSAR SWC. We
have further investigated how to derive an abstract interface
description based on this TA model according to [5]. We
have demonstrated that, on the one hand, some obstacles
and pitfalls must be kept in mind when deriving such an
interface, e.g., in the case of the found error states, but, on
the other hand, we can automatically identify these pitfalls
in the form of examples. At least for the considered SWC,
we have been able to remove such pitfalls by modifying
the configuration or removing traces from the interface. As
a result we obtain a SWC that can be used in the desired
modular fashion. Compared to existing approaches dealing
with TA for describing the interface behavior of components,
we believe that for the considered application domain such
an automatic check between the white box SWC and the
derived interface is necessary, due to the fact that assump-
tions and required preconditions of existing approaches
are not fulfilled when deriving a TA based on a given
AUTOSAR SWC. For example, in [10] timed-interfaces are
defined to be compatible if there is at least the possibility
that they can work together and, thus, undesired behavior
is not necessarily excluded. In [11] deterministic TA and
in [12] time deterministic TA are required for being able
to reason, e.g., about time trace inclusion, and in [13] TA
are required to be receptive, which is hard to achieve at the
implementation level, especially for AUTOSAR SWCs. Due
to the fact, that applying abstraction on the more detailed
model is the main tool for protecting IPs, theories dealing
with timed interfaces not supporting such an abstraction
mechanism (e.g., [10, 13]) are not considered here.

For the future, we plan to evaluate in more detail, which
aspect of an AUTOSAR SWC can be represented by a TA

model based on a more complex application example. Fur-
thermore, we are planing to realize the automatic derivation
of the TA models as well as the automatic derivation of
interfaces based on a given white box description of an AU-
TOSAR SWC. We will investigate whether and how it will
be possible to automatically change the configuration part
or to restrict the interfaces for the purpose of automatically
achieving modularity like described in this work.
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Abstract—This paper presents an approach to ana-
lyzing a model of networked cyber-physical systems for
fault propagation. We present an implementation of a
probabilistic logic model, which allows for reasoning via
symbolic evaluation as well as numeric evaluation to
perform a quantitative fault analysis. Our models are built
from a few building blocks, which can be instantiated
as standard or high integrity; communication paths can
be made redundant, and finally, whole subsystem blocks
can be replicated. We assume an underlying networking
infrastructure of TTEthernet, which allows traffic of
time-triggered, rate-constrained, or best-effort modes with
different safety features. We apply our approach to a case
study of a brake-by-wire system that contains communi-
cation flows with different traffic modes according to their
criticality.

I. INTRODUCTION

Safety-critical networked systems such as the avion-
ics in an airplane or an automotive X-by-wire system
typically have to be fault tolerant, i.e., these systems
have to remain operational even in the presence of fail-
ures. Achieving fault tolerance requires safety analysis
that is best performed beginning with the earliest design
stages. Part of such design analysis is the so-called fault
propagation analysis of the system model. In safety-
critical systems, we are interested in characterization
faults and how faults manifest as failures that affect
overall reliability goals of the system.

In this paper, we present a fault analysis tool for
networked cyber-physical systems (CPSs). We present
networked CPSs as a graph where nodes represent
physical components, such as CPU, communication
controller, and physical links, and edges represent the
direct information flow between nodes. We assume
that faults occurring in a particular node may propa-
gate along the connections in the graph representing
the networked cyber-physical systems. For example, a
faulty communication controller may send an arbitrary
number of faulty messages. Without having protection
mechanisms in place, the failure of the communica-
tion controller could lead to monopolizing the shared

network infrastructure, thereby making it unusable for
other non-faulty communication controllers.

Various redundancy schemes and safety techniques
can be used as a protection mechanism to prevent or
mitigate failure propagation and, thus, improve system
availability and integrity. However, the decision about
where to locate what protection mechanism along the
graph of the networked CPS currently relies heavily
on expert knowledge. The proposed tool allows de-
signers to efficiently analyze various network choices
and evaluate the effect of protection mechanisms on
fault propagation, and therefore rely less on expert
knowledge.

We provide a formal Maude [4] model that uses
basic building blocks (Host, End System, Switch) to
model networked CPS topologies. Given an underlying
networking infrastructure of TTEthernet (TTE) [15],
which is an extension to standard Ethernet, we can
select traffic modes with varying safety properties.
Other safety techniques are selecting components with
standard- or high-integrity features and adding path
and system redundancy. We then combine this network
and protection mechanism model with fault propagation
rules that describe in a probabilistic logic how faults oc-
curring in a component, or at an input of a component,
transform into a fault at the output. Our implementation
allows for both symbolic and quantitative fault propa-
gation analysis. We use the example of a brake-by-wire
(BBW) system with multiple communication flows to
illustrate our approach.

II. RELATED WORK

Our work is mostly inspired by the functional and
component failure analysis of the Hierarchically Per-
formed Hazard Origin and Propagation Studies (HiP-
HOPS) [14] method. HiP-HOPS uses these analyses
in conjunction with the system model to automatically
construct fault trees. Our symbolic analysis yields prob-
abilistic logic formulas, which could be interpreted as



fault trees. In contrast to our work, HiP-HOPS supports
mature tool integration and hierarchical models.

An inductive method to study fault propagation is
the Failure Propagation and Transformation Analysis
(FPTA) [6]. A failure logic for each component allows
for automated analysis of the system. Here, the failure
logic depends only on the inputs, which is appropriate
for modeling software failures, but cannot explicitly use
failure states of the component itself. In [5], the authors
present an approach to quantify the failure propagation
analysis using the PRISM probabilistic model checker.

So-called State/Event-Fault Trees (SEFTs) [8] inte-
grate finite state models with fault trees, in particular
Markov Chains and Statecharts. For quantitative proba-
bilistic analysis, SEFTs are translated component-wise
into Dynamic Stochastic Petri Nets (DSPNs) and then
merged into one flat net for analysis using tools such
as TimeNet.

III. NETWORKED SYSTEM ARCHITECTURE

For this study, we assume an underlying communica-
tion network using TTEthernet (TTE) technology [16].
TTE is an extension to standard Ethernet for usage in
networked cyber-physical systems such as avionics or
automotive applications. In standard Ethernet, messages
are communicated according to a best-effort paradigm,
which means that no bounds on a message’s transmis-
sion latency can be given. Under high load, buffers in
network switches can overflow and messages are lost
entirely. In noncritical systems, higher-layer protocols
such as TCP/IP often compensate for message loss
using re-transmission strategies. However, networked
cyber-physical systems typically have stringent end-to-
end timing requirements that do not allow the temporal
penalty of repeated transmission attempts. Furthermore,
standard networks cannot guarantee that any successive
transmissions will actually be successful.

TTE achieves timely transmissions with known up-
per bounds on latency and jitter by providing rate-
constrained (RC) and time-triggered (TT) communica-
tion paradigms in addition to standard best-effort (BE)
traffic. Rate-constrained traffic is well-known from an
avionics Ethernet variant ARINC 664P7-1 [1]. It is
based on an a priori agreement of the network com-
ponents on the number, size, and maximum frequency
of messages. This knowledge is sufficient to calculate
the required network resources, i.e., the switch buffers,
and it can be guaranteed that no message will be lost
due to buffer overflows. However, different network
components may source their messages at about the
same point in time or may even source several messages
back to back. This uncoordinated transmission pattern
quickly leads to high transmission latencies.

The time-triggered communication paradigm takes
the level of determinism to the extreme. Here, all
communication participants are equipped with local
clocks that are brought in close agreement to establish
a synchronized global time. An Ethernet frame may
now be dispatched at an a priori specified point in
the global time, which makes the frame transfer time-
triggered. The sum of all those specified points in time
for dispatch, relay, and potentially also reception is
collectively referred to as the “communication sched-
ule” for time-triggered communication. When correctly
aligned, the communication schedule ensures that any
two time-triggered Ethernet frames will never compete
for transmission resources (e.g., communication links,
switch buffers) and their transmission latencies can be
kept minimal and almost constant.

End System HostSwitch End SystemHost

Physical LinkBus Bus

Fig. 1. Simple chain of network components

To model networked CPSs, we identified a few
generic components from which we build networks.
Fig. 1 shows an example of these components that are
connected via a communication link. We distinguish the
host (H) component (CPU, memory, I/O and so on)
from an end system (ES), which denotes the network
interface card, here the TTE controller. H and ES
components are often located on the same physical
platform and are usually connected via an on-chip bus.
To connect different ESs in the network, one uses at
least one switch (SW) in between. For our models,
these are TTE SWs, which allow the different traffic
modes, but a legacy system could also be built with
standard Ethernet SWs. A bus connects Hs and ESs,
and a physical link connects SWs with other SWs or
ESs.

A. Dependability Means
Aside from choosing an appropriate traffic mode that

TTE supports, we consider the following three broad
fault tolerance strategies that improve the integrity and
availability properties of a network architecture and
thereby also enhance the safety of the network. Integrity
is the absence of improper system alteration; it is the
ability of a system to detect faults in its own operation
and to reach a fail-safe state or safe output states in
the event of failure and inability to recover. Availability
is a measure that the system functions correctly in the
presence or absence of both transient and permanent
failures of the different network components. We dis-
cuss the three strategies next.
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Fig. 2. High-integrity self-checking pair

In our model, all Hs, ESs, and SWs can be instan-
tiated as standard- or high-integrity components. As
shown in Fig. 2, a High-Integrity (HI) component con-
sists of two replicated Standard-Integrity (SI) compo-
nents functioning as a single unit for increased integrity.
The input messages received at each SI component pair
are exchanged and compared to ensure that each of
them receive identical inputs and as a result triggers
identical internal message processing states in each
component. The output messages are also compared
and only identical messages whereby both components
agree are in effect transmitted. The expectation is that
by providing each SI component with identical inputs,
using the same internal processing logic, states and
clocks, the pair’s outputs will match exactly under
fault-free conditions. When operators

⊕
during input

exchange or output comparison do not agree, then
the combined high-integrity component fails silently
so as to not influence downstream components. In our
formal model, this behavior translates into converting
an arbitrary fault into an omission failure. Notice that
this mechanism uses replication of components solely
for integrity at the cost of availability.

End System Host

Switch A

End SystemHost

Switch B

Fig. 3. Path redundancy in simple chain

Including path redundancy increases the availability
of a message by transmitting an identical copy over
disjoint but redundant paths from the source to the
destination. Fig. 3 shows the simple chain of network
components enhanced with two switches A and B that
allow for disjoint paths between the ESs. The receiving
ES now picks the first arriving message from the sender,
thereby protecting against message loss on one of the
paths due to permanent or transient failures of the
SWs or links on that path. Note that this mechanism
does not protect against failures at source or destination
components.

Finally, system redundancy in conjunction with the
availability and integrity constructs introduced above,
can be used to improve the overall safety and relia-

bility of the network, if safety properties like repli-
cate group determinism or interactive consistency are
strictly adhered to [2], [7], [9], [10]. Literature de-
fines architectures such as dual-dual active standby,
triple or N-modular redundancy, and triplex-triplex [3],
[17]. Additional replication coordination mechanisms
are passive, semi-active, or active replication; voting and
multistage N or Triple Modular Redundancy (N(T)MR),
congruency exchange.

B. Faults

Faults

Omission (om)

Commission (com)

Value

Timing

Source Address (vSA)
Destination Address (vDA)
Sequence Number (vSN)
Frame Length (vLen)
Payload (vData)
Bit Flipped (vFCS)

Early (te)
Late (tl)

Fig. 4. Hierarchy of faults

We depict a hierarchy of faults in Fig. 4. This
hierarchy is meant as a reference to typical faults used
in literature. In our study, we are concerned only with
the leaf nodes, which comprise the set of possible faults
in our network-centric application with specific modes
for the TTE communication technology used such as
vSN for incorrect sequence numbers in rate-constrained
traffic.

Faults listed in Fig. 4 can be introduced in specific
components, or can be detected and stopped or trans-
formed to a different fault at some components and thus
propagated downstream. A number of fault detection
and protection mechanisms are builtin to the different
network components and depend on the type of traffic
mode: Time-Triggered (TT), Rate-Constrained (RC) or
Best-Effort (BE). We model the fault propagation prob-
abilistically, taking into account the component failure
rates and the efficacy of the protection mechanisms.
We highlight some of the fault detection and protection
mechanisms in Table I. The TTE specification [15]
contains more details.

IV. A CASE STUDY: BRAKE-BY-WIRE

Papadopoulos et al. [13] describe an initial brake-by-
wire model that we are extending to include commu-
nication of signals from the wheel brakes to the brake
lights as well as feedback to the driver from the light
sensors about whether any of the bulbs need to be re-
placed. We also include a safety-critical communication
of brake signals to the motor control logic in order to
prevent opening the throttle while braking.
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Fig. 5. High-level overview of brake-by-wire system design

TABLE I
FAULT DETECTION AND PROTECTION MECHANISMS

Mechanism Traffic Type Components

FCS/CRC addition TT, RC, BE ES, SW
VL ID & destination address TT, RC, BE ES, SW
Message length and type TT, RC, BE ES, SW
Payload length TT, RC ES, SW
Scheduled TT dispatch TT ES, SW
FIFO ordering RC, BE ES, SW
Traffic shaping RC ES
Timing window TT SW
BAG policy RC SW
Port BAG enforcement BE SW
Age check RC SW
Redundancy management TT, RC ES
Integrity checking TT, RC ES
Input exchange TT, RC, BE High Integrity
Output cross comparison TT, RC, BE High Integrity

Fig. 5 shows a high-level overview of our brake-
by-wire system design. Each sensor and actuator has
a corresponding logic unit, which interfaces with the
TTE communication infrastructure. Corresponding to
the criticality of the signal, the TTE communication
links are labeled as TT (high criticality), RC (medium
criticality), and BE (low criticality). The highly critical
paths should also be protected by redundancy. The
following rules govern the expected behavior of the
system.

• If brake pedal is engaged, brake at each wheel.
• If wheel brake is engaged, illuminate brake lights.
• If wheel brake is engaged, close throttle at motor.
• If brake light does not work, show warning.

From the general system specification, we model the
system using the components and mechanisms intro-
duced above. For each message flow, we assign a so-
called Virtual Link (VL) between the source and the
destination(s). During design refinement, each VL is
mapped onto actual channels in the network architec-
ture. Table II contains all 12 virtual links in our model
of the brake-by-wire system.

TABLE II
TRAFFIC FLOWS IN BRAKE-BY-WIRE SYSTEM

VL Sender Receiver(s) Type

1 Pedal Logic Brake Logic 1, 2, 3, and 4 TT
2 Brake Logic 1 Motor Logic TT
3 Brake Logic 2 Motor Logic TT
4 Brake Logic 3 Motor Logic TT
5 Brake Logic 4 Motor Logic TT

6 Brake Logic 1 Light Logic 1, 2, and 3 RC
7 Brake Logic 2 Light Logic 1, 2, and 3 RC
8 Brake Logic 3 Light Logic 1, 2, and 3 RC
9 Brake Logic 4 Light Logic 1, 2, and 3 RC

10 Light Logic 1 Driver Display BE
11 Light Logic 2 Driver Display BE
12 Light Logic 3 Driver Display BE

V. MAUDE IMPLEMENTATION

A. Equational Logic and Maude

Equational logic (EL) [12] is the subset of first-
order logic with = as the only predicate symbol, and
equations as the only formulas (i.e., there are no logical
connectives). Despite being a very small subset of first-
order logic, equational logic can be used to define any
computable function. Furthermore, EL can be used as
a programming language, by treating equations as left-
to-right rewrite rules (i.e., ignoring the symmetry rule).

Maude is a multiparadigm executable specification
language encompassing EL. The Maude interpreter pro-
vides efficient prototyping of quite complex test cases as
well as built-in search and model checking capabilities.

For the fault analysis tool, we use (conditional)
equations to specify fault propagation rules. Terms for
the equations are built from operators and variables.
Equational axioms are introduced with the keyword eq

(or ceq for conditional equations) followed by the two
terms being declared equal separated by the equality
sign =.



B. Probabilistic Fault Analysis Using Maude

We have developed a network fault analysis in Maude
that allows us to specify network topologies and traffic
flows, and analyze the fault introduction and propaga-
tion in the network in a probabilistic way. The most
important data structures in this framework are network
configurations, consisting of a network and one or more
dataflows. A simple network configuration specified in
this framework is shown in Fig. 6.

si-es(0) si-host(1)si-sw(0) si-es(1)host(0)

bu
s(
0)

pl
(0
)

pl
(1
)

bu
s(
1)

op net : -> NetworkConfiguration .
eq net =

(< si-host(0) | empty | out(0) >,
< conn(0) | si-host(0) : out(0) to bus(0) : in(0) >,
< bus(0) | in(0) | out(0) >,
< conn(1) | bus(0) : out(0) to si-es(0) : in(0) >,
< si-es(0) | in(0) | out(0),out(1) >,
< conn(2) | si-es(0) : out(0) to pl(0) : in(0) >,
< pl(0) | in(0) | out(0) >,
< conn(3) | pl(0) : out(0) to si-sw(0) : in(0) >,
< si-sw(0) | in(0) | out(0) >,
< conn(4) | si-sw(0) : out(0) to pl(1) : in(0) >,
< pl(1) | in(0) | out(0) >,
< conn(5) | pl(1) : out(0) to si-es(1) : in(0) >,
< si-es(1) | in(0),in(1) | out(0) >,
< conn(6) | si-es(1) : out(0) to bus(1) : in(0) >,
< bus(1) | in(0) | out(0) >,
< conn(7) | bus(1) : out(0) to si-host(1) : in(0) >,
< si-host(1) | in(0) | out(0) >,
< conn(8) | si-host(1) : out(0) to null : in(0) >) ||
df(0 | tt |

faults(conn(0) | unknown ),
faults(conn(1) | unknown ),
faults(conn(2) | unknown ),
faults(conn(3) | unknown ),
faults(conn(4) | unknown ),
faults(conn(5) | unknown ),
faults(conn(6) | unknown ),
faults(conn(7) | unknown ),
faults(conn(8) | unknown )) .

Fig. 6. Example of a network configuration specified in Maude

The network part consists of a number of network
components, each surrounded by angle brackets. The
network specified here is an all-SI version of the net-
work shown in Fig. 1. We have two SI hosts, two buses,
two SI end systems, two physical links (PL), and an
SI switch. Each component has ingoing and outgoing
ports, connected by connections. Numbers are used as
identifiers to distinguish different components of the
same type. The bottom part of the network configuration
is a dataflow (df). The dataflow specifies its traffic type
(in this case tt for time triggered). It also lists all
the connections that are part of the dataflow, with a
fault annotation for each one. Before fault analysis,
each fault annotation is unknown. The first objective
of the fault analysis is to replace all the unknowns
with boolean formulas representing the conditions under
which the fault occurs.

Each network component can introduce and/or prop-
agate faults of the different types shown in Fig. 4. The
introduction/propagation behavior of each component
is specified using one or more equations in the Maude
specification. For example, the rule for transmitting SI
host is shown in Fig. 7.

ceq
(< SIHost | INS | Out1,OUTS >,
< Conn1 | SIHost : Out1 to C : In1 >, Net) ||
(df(DF | TType | faults(Conn1 | unknown), CS),DFS)
=
(< SIHost | INS | Out1,OUTS >,
< Conn1 | SIHost : Out1 to C : In1 >, Net) ||

(df(DF | TType |
faults(Conn1 | om : OMout, com : COMout,
vSA : VSAout, vDA : VDAout, vSN : VSNout,
vLen : VLENout, vData : VDATAout,
vFCS : VFCSout, te : TEout, tl : TLout ),CS),
DFS)

if
outgoingBusConn(< Conn1 | SIHost : Out1 to C : In1 >,
Net, CS) /\

HFail := pr(si-host-out-fail,SIHost : Out1) /\
OMout := HFail /\
COMout := HFail /\
VSAout := if TType == be then HFail else false fi /\
VDAout := HFail /\
VSNout := false /\
VLENout := if TType == be then HFail else false fi /\
VDATAout := HFail /\
VFCSout := false /\
TEout := HFail /\
TLout := HFail .

Fig. 7. Fault introduction rule for SI hosts

This is a conditional equation, consisting of a left side
before the = sign, a right side after the = sign, and a
condition after the if. Note that all the capitalized parts
are variables. The rule will execute when any part of
the network matches the left side, and the condition is
true. Thus, this particular rule applies to SI hosts with
an outgoing connection that is part of a dataflow. The
result of executing the rule is to replace the matched
part of the network with the right side of the equation.
The only difference between the left and right sides of
the equation is that in the right side, the unknown fault
annotation has been replaced by a number of actual
fault annotations for the different fault types (om, com,
etc.). The variables that represent the boolean formulas
(OMout, COMout, etc.) are defined in the condition part
of the equation. The condition first creates a probabilis-
tic variable (using the pr operator) called HFail of
type si-host-out-fail. This variable represents a
failure associated with the outgoing port of the host.1

This variable is then used in the variable assignments
that follow in a straightforward way. Most of the faults
simply happen if and only if the host failure happens.

Because a transmitting host is the originator of any
data it sends, unlike all other components, it cannot

1It is also possible to create more fine-grained failure types, rather
than one big failure type for the whole component.



propagate faults, only introduce them. For a more
typical case, Fig. 8 shows part of the condition of the
rule for SI end systems. Here, we have both propagation
and introduction of faults, and separate possible failures
on the incoming and outgoing ports, respectively.

ESInFail := pr(si-es-in-fail,SIES : In2) /\
ESOutFail := pr(si-es-out-fail,SIES : Out2) /\
OMout := OMin or (COMin or VDAin or TEin or TLin) and

not ESInFail or ESInFail or ESOutFail /\
COMout := ESOutFail /\
VSAout := ESOutFail /\
VDAout := (VDAin and ESInFail) or ESOutFail /\
VSNout := if TType == rc then ESOutFail else false fi /\
VLENout := ESOutFail /\
VDATAout := VDATAin or ESInFail or ESOutFail /\
VFCSout := ESOutFail /\
TEout := ESOutFail /\
TLout := ESOutFail

Fig. 8. Part of fault rule for SI end systems

Note that the incoming failures (OMin, COMin, etc)
are themselves (possibly complex) formulas. Thus, the
execution of the equations builds up these formulas in
a combinatorial way. We are primarily interested in the
fault annotation on the last connection of the dataflow,
i.e., the combined effect of all of the network compo-
nents that data has to go through. As an example, Fig. 9
shows the fault formula for com faults on connection 8
of our example network, after doing the fault analysis.

pr(si-es-out-fail, si-es(1) : out(0)) or
pr(si-es-in-fail, si-es(1) : in(0)) and

(pr(si-sw-out-fail, si-sw(0) : out(0)) or
pr(si-es-out-fail, si-es(0) : out(0)) and

pr(si-sw-in-fail, si-sw(0) : in(0)))

Fig. 9. A fault formula generated by the Maude fault analysis

Again, the formula is a boolean combination of
probabilistic variables that represent the occurence of
failures in various components through which the data is
transmitted. In general, these formulas can become quite
large. The next step of fault analysis is to evaluate the
formula. Given some actual numbers for each type of
failure (si-es-out-fail, si-sw-in-fail, etc.), we
want to know the probability for the whole compound
formula. There are both exact and approximate ways
of doing this. In the following, we present our first
implementation of both types of methods.

To calculate the probability of one of our formulas,
we use the following rules of probabilistic logic.2

Pr(not P ) = 1.0− Pr(P )
Pr(true) = 1.0
Pr(false) = 0.0
Pr(P andQ) = Pr(P ) ∗ Pr(Q)

if P and Q are independent
Pr(P orQ) = Pr(P ) + Pr(Q)

2http://en.wikipedia.org/wiki/Probability space

if P and Q are disjoint

The issue here that prevents a straightforward calcu-
lation is the side conditions for the and- and or- rules.
The two subformulas are typically not independent or
disjoint due to variables appearing in both. There are
different approaches to computing with probabilistic
logic [11].

One approach is to convert the whole formula into
a form where all conjunctions are independent and
all disjunctions are disjoint. It turns out that formulas
in full disjunctive normal form (full DNF) are of the
type described. A formula is in DNF if and only if
it is a disjunction of one or more conjunctions of
one or more literals (a literal is either a proposi-
tional variable or a negated variable). For example,
(P andQ) or (P andR) and P or (Q and notR) are
both in DNF. A formula is in full DNF if and only if it
is in DNF and if each of its variables appears exactly
once in every clause. Any formula can be converted to
full DNF. For example, the first formula above becomes

(P andQ andR) or (P andQ and notR) or
(P and notQ andR)

Note that each formula has a unique full DNF form,
but not a unique DNF form. The full DNF form can be
interpreted as the entries in a truth table that make a
formula true. For example, for the formula above (with
1 for true and 0 for false) the truth table is shown in
Table III.

TABLE III
FULL DNF FORMULA AS A TRUTH TABLE

P 0 0 0 0 1 1 1 1
Q 0 0 1 1 0 0 1 1
R 0 1 0 1 0 1 0 1

(P and Q) or (P and R) 0 0 0 0 0 1 1 1

Each column describes one complete variable assign-
ment, or “possible world.” Each column differs in at
least one position. Hence, each column is disjoint from
all the others. They describe different states of affairs
that cannot be true at the same time. Similarly, each row
for the atomic variables is independent of the others,
since we already stated that we assume that the atomic
variables are independent.

Looking at the table, we see that the entire formula
(last row) is true exactly in the situations described
by the rightmost three columns. In other words, when
P is true, Q is false, and R is true, OR when P is
true, Q is true, and R is false, OR when all three are
true. As can be seen from this verbiage, each column
can be interpreted as a conjunctive formula, and the
combination of several columns can be interpreted as

http://en.wikipedia.org/wiki/Probability_space


a disjunction. Each column contains all the variables.
Hence, what we get from the table is a full DNF
formula, the probability of which we can easily compute
using the rules above. Our first implementation used this
approach, within the Maude framework.

The problem with the “full DNF” method described
above is its computational complexity. The conversion
to full DNF (or even regular DNF) form is exponential
in the number of variables contained in the formula.
Thus, we have been able to use this method only
for small examples, and as a reference implementation
with which to compare other approaches. Our second
approach uses Binary Decision Diagrams (BDDs) as
a representation instead of converting the formulas to
full DNF form. There are several highly efficient BDD
packages. These can very quickly return all variable
assignments that satisfy a given formula/BDD. Given
those variable assignments, we can calculate our prob-
abilities the same way as with the full DNF formulas.
Our implementation uses Maude to generate the fault
formulas, and then uses the JavaBDD3 library to analyze
the results in Java. In our tests, computation time
with BDDs was negligible, even where the original
implementation crashed or stalled.

It is still possible to hit upon limitations with the
BDD approach, as its theoretical worst-case behav-
ior is still NP-hard. Another approach to calculating
the probabilities is to use an approximate, sampling-
based method. The idea is to generate a number of
samples, where each sample randomly determines the
values (true or false) of all the probabilistic variables,
according to their probabilities. The formula is then
evaluated with all the variables replaced with true or
false. The whole formula thus becomes true or false for
each sample. With enough samples, the distribution of
true/false for the entire formula will approach the cor-
rect result that would be calculated by an exact method
such as the one described above. We have implemented
a sampling-based method using a combination of Java
code and Maude. The implementation is capable of
evaluating several hundred thousand samples per sec-
ond. However, our failure probabilities are sometimes
on the order of 10−9. In order to “catch” these tiny
probabilities, we need a huge number of samples and
hours of computation time. Thus, this method is still
not fast enough for practical purposes. However, we are
exploring alternative, weighted sampling methods that
may be applicable, which would make the computation
much faster.
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Fig. 10. Example VL 6 (rate-constrained, no path redundancy) with
points of symbolic and numeric analysis and fault introduction

C. Fault Analysis Results for BBW

Let us reconsider the BBW application introduced
in Section IV. Fig. 10 depicts the subgraph of VL 6
as an example. In our implementation, we model buses
and physical links as part of the network, so as to define
failures on such links. In VL 6, a signal from one wheel
brake is sent to all three brake lights to illuminate. The
numbers in parenthesis denote identifiers in the Maude
code.

In Fig. 11 we show the symbolic analysis for omis-
sion faults for the connection from the Brake1 end sys-
tem to the physical link toward Switch1. The symbolic
analysis for connections further downstream becomes
too large to print here.

pr(bus-fail, bus(2)) or
pr(si-host-out-fail, si-host(1) : out(0)) or
pr(si-es-in-fail, si-es(5) : in(0)) or
pr(si-es-out-fail, si-es(5) : out(1)) or
not pr(si-es-in-fail, si-es(5) : in(0)) and
(pr(bus-fail, bus(2)) or
pr(si-host-out-fail, si-host(1) : out(0)))

Fig. 11. Results of VL 6 symbolic analysis (for connection from
Brake1 to physical link with Switch1)

TABLE IV
EXAMPLE FAILURE PROBABILITIES FOR BBW

Fault Type Probability∗)

FCS check 10−9

physical link 10−9

bus 10−9

SI host input 10−6

SI host output 10−6

SI end system input 10−6

SI end system output 10−6

SI switch input 10−6

SI switch output 10−6

∗) These are not representative numbers for real network
components.

When analyzing the quantitative fault propagation of
a VL, we first supply the failure probabilities for each

3http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/


component type as a valuation set. Table IV shows the
failure probabilities used for the example computation
below. Fig. 12 contains the result of analyzing VL 6 at
the receiving hosts Light1 (without any introduced fault)
and at Light2 (with a physical link failure introduced
between Switch1 and Light2).

om : 7.003789723448e-5,
com : 1.00001999971e-5,
vSA : 1.001000000009e-5,
vDA : 1.001010010009e-5,
vSN : 3.002969910071e-5,
vLen : 1.001010010009e-5,
vData : 1.001010010211e-5,
vFCS : 1.0010000000099e-5,
te : 1.000000000002e-10,
tl : 1.999990000002e-10

om : 1.0,
com : 1.00001999971e-5,
vSA : 1.001999979992e-5,
vDA : 2.001989959991e-5,
vSN : 1.0,
vLen : 2.001989959991e-5,
vData : 2.001989959991e-5,
vFCS : 1.001999979992e-5,
te : 1.000000000002e-10,
tl : 1.999990000002e-10

Fig. 12. Results of VL 6 analysis (without and with introduced fault)
using scientific notation (i.e., 1e-9 = 10−9)

One can see clearly that a faulty physical link at the
input of Light2 causes an omission error and also a
violation of the sequence numbers that are expected
during a rate-constrained communication. If the traffic
mode were to be set to time-triggered, the sequence
numbers no longer apply. However, the omission error
would still occur. If the system-level requirements call
for better reliability of the message delivery from the
brakes to the lights, the system design engineer could
now test an architecture with path redundancy or other
enhancements.

VI. CONCLUSION AND FUTURE DIRECTION

The Maude-based Fault Analysis tool provides a
means to evaluate the effectiveness of fault protection
mechanisms in various network architectures. We have
implemented the tool and applied it to various sample
networks. A special-purpose editor automatically gen-
erates input to the Maude Fault Analysis tool. Because
of space limitations, we have not featured the editor in
this paper. However, the network editor and the fault
analysis tool will be made publicly available.4

The evaluation on a simple brake-by-wire network
with high- and standard integrity components, and path
redundancy but no system redundancy, illustrates the
complexity of fault formulas. The analysis tool success-
fully performs symbolic and quantitative fault analysis.

Future extensions concern extending the underlying
network model and fault propagation rules for system
redundancy schemes and analyzing the symbolic fault
formulas to determine main contributors to faults, so as
to point the designer where additional protection would
have the most payoff. Another direction includes mod-
eling fault propagation with temporal aspects, possibly
extracting dynamic fault trees for better comparison
with other approaches. An additional temporal aspect

4http://promise.csl.sri.com

to consider is how failure rates change over time (e.g.,
as a “bathtub curve”). Our current tool assumes constant
failure rates.
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Abstract— We consider the interaction between the natural
redundancy of sensor data for a variety of data gathering
applications and the need for reducing energy consumption
when such data is obtained through low-energy nodes com-
municating wirelessly. We employ compressed sensing as a
mechanism for reducing the number of sensor nodes that
need to be active at any given point in time for effective data
reconstruction. Correspondingly we describe a decentralized
coordination scheme that permits nodes to adjust their sleep
and activity schedules subject to connectivity and coverage
requirements that allow for satisfactory data reconstruction
fidelity. Such problems are intractable and our schemes are
approximation algorithms for minimizing the number of active
nodes while adhering to the mentioned requirements. Our
research contributions are two-fold: (i) we derive bounds on the
performance of our coordination scheme and (ii) we evaluate
the effectiveness of integrating compressed sensing with our
coordination scheme through simulations based on a data
generation tool that models some physical phenomena.

I. INTRODUCTION

Wireless sensor networks are an ideal platform for mon-
itoring and controlling physical environments. In such
networks, nodes communicate with each other and convey
data periodically to a base station or fusion centre over
multi-hop wireless links. A first-order constraint for some
applications is the energy budget because the network may
be deployed in harsh, and not easily accessed, terrain. Ap-
plication users would then prefer to maximize the interval
between returning to the sensing field to replace batteries.

The lifetime of a wireless sensor network can be max-
imized in several ways. One obvious solution is to add
more batteries to sensor nodes but this approach leads to
an increase in the form factor of the nodes, which makes
them unsuitable for several applications. An alternative
solution is to utilize a high density of nodes and employ
only a fraction of these nodes at any given time instant.
This approach requires that we determine appropriate duty
cycles for different nodes. This approach is also well suited
to the case when nodes may be equipped with rechargeable
batteries and the recharge operation (whether through
solar energy or other harvesting methods) requires nodes
to transition to an inactive state. A further advantage of
high-density deployments is fault tolerance because the
redundancy present in the system enables correct func-
tioning even when certain nodes fail. As a consequence of
the advantages and technological feasibility of high-density
sensor networks, we will discuss methods that are well
suited to lifetime management in this scenario.

In particular, we determine near-optimal methods for

duty cycling between sensor nodes so as to preserve cover-
age of the sensing field and connectivity between active
nodes and the base station. Decentralized operation of
sensor nodes is desirable because this limits the effect of
failures. We therefore focus on decentralized methods for
ensuring coverage and connectivity.

In certain applications where the data observed by differ-
ent sensors is correlated, as is the case when extracting ther-
mal profiles of a region, one can utilize a limited number
of nodes and yet reconstruct the complete profile through
compressive sensing [14]. Thus, when data observed by
sensor nodes is correlated, duty cycling does not diminish
the accuracy of data gathering. We will emphasize the use of
compressive sensing when appropriate to extend network
lifetime while acquiring data with acceptable error bounds.
An advantage of compressive sensing is that we can keep
only a few nodes active at every time instant even when
node density is not high if the data correlation is high. It
is important to note that even when compressive sensing
is employed, we do need methods to ensure appropriate
coverage and a connected backbone to gather the sensed
data.

Whereas the idea of duty cycling to save energy is not
new, our central contributions are to:

• develop a decentralized, and near-optimal, method for
duty cycling while preserving connectivity and cover-
age in the sensing field (Section IV),

• establish bounds on the performance of the node
activation (sleep scheduling) algorithm (Section IV-B),
and

• utilize compressive sensing for reconstructing missing
data in the appropriate scenarios (Section V).

When describing our technique for selecting nodes to be
active we also establish the hardness of obtaining optimal
solutions to that problem. Our methods extend the state
of the art in sensor sleep scheduling (or duty cycling). In
designing our techniques, we were guided by the need for
simplicity because implementation of algorithms for WSNs
are often more challenging than they may appear [34].

Through simulation, we are able to demonstrate that we
can extend the lifetime of certain networks by a factor of 5
while ensuring that data quality is sufficiently high. While
our methods are useful for a variety of sensor network
applications, they are not tailored for some situations such
as intruder detection and object tracking [27] that require
fast response times and where data correlation between
sensors is poor.
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Fig. 1. Sensor network with active nodes connected to a base station.

II. SYSTEM MODEL AND ASSUMPTIONS

In our model of a wireless sensor network, we consider
a set of sensor nodes that can communicate with each
other wirelessly. We assume that each sensor node knows is
location, either through GPS information or through other
well-studied techniques such as localization [15]. We make
no assumptions about the topology of the network. In other
words, nodes could be distributed according to a regular
pattern such as a grid or be distributed randomly over the
sensing region.

Each node can communicate with other nodes that are
within its transmission region. Nodes within the transmis-
sion region of a node are called its neighbours. Each node
also has a sensing range, which determines the area that it
is able to gather data from.

In the network, a particular node is assumed to be the
base station or data sink. This node does not have energy
constraints because it may be connected to a permanent
power source. The base station is computationally more
powerful than other nodes in the network. This node is,
however, subject to the same communication constraints
as other nodes in the network. Henceforth, we will use the
term node to refer to nodes that are not the base station,
and we will use the term data sink or base station when
we explicitly refer to this particular node.

We assume that nodes can be in one of two states: active
or inactive. In the active state, a node senses data and
communicates with a subset of its neighbours to ensure
that the data is transmitted to the base station, possibly over
multiple hops. We do not assume that intermediate nodes
fuse data to reduce the size of data transmitted although
data fusion of this nature can be accommodated by the
methods that we propose.

We assume that the network is connected if there is a
path from every active node to the base station, and all
nodes on the path are also active. The network provides
full coverage if the sensing ranges of all active nodes covers
the entire sensing region. We do make the assumption that
the initial deployment of nodes provides complete coverage
when all nodes are active.

III. RELATED WORK

Prior work on data gathering techniques for sensor net-
works have explored various avenues [20], [21] to reduce

the cost of acquiring data from a sensor network. These
include energy-efficient routing protocols [28], aggregation
techniques [19], [10] and data store abstractions [21], [20].
These schemes did not adopt duty cycling but focused
on reducing the energy cost of communication, and the
gains achieved were limited because application-aware duty
cycling can explicitly transition nodes to an inactive state
and achieve greater energy savings. Researchers have also
developed policies that use transmission power regulation
to provide energy savings [16]. These policies require com-
plicated MAC and routing protocols. Since our aim is to
build a system which is simple to implement, we try to
avoid the use of such complex protocols.

Sleep scheduling and duty cycling have been proposed
in the past, and the main goal is to preserve some level
of connectivity and coverage among nodes that are active.
Whereas prior work has demonstrated the value of exploit-
ing low-power sleep states in sensor nodes [32], we have
developed a decentralized scheme for sleep scheduling that
is configurable in terms of the active neighbourhood size
for any node. We also establish performance bounds on
our scheme. We gain knowledge from the previous body
of work on connectivity and coverage in sensor networks.
While some papers stress coverage [29], [5], [33], others
stress connectivity [6], [9], [36]. Most of the coverage tech-
niques try to find a relation between the sensing range
and communication range of the nodes. Such results are
relevant to our proof for bounding the sub-optimality of
the CC Algorithm.

We employ compressed sensing when possible to re-
construct missing data in a duty-cycled WSN. Compressed
sensing has been applied in image processing [13], [31] for
recovering dead and unreadable pixels from surrounding
pixels. Jarvis et al. [14] were the first to utilize this technique
for sensor networks. Jarvis et al. used compressed sensing
to conserve bandwidth in a WSN and did not tackle the
problem of lifetime maximization.

Other work connecting sensor networks to compressed
sensing [1], [2], [24], [22] has been directed at devising
better reconstruction algorithms and have tried applying
compressed sensing to solve different shortcomings in sen-
sor networks. Quer et al. [23] tested these algorithms on
real workloads but even they did not articulate concrete im-
plementation metrics and did not measure energy savings.
Other researchers have come up with compression schemes
that can be adapted efficiently with routing [12]; our work
is different from them in the sense that compression and
routing are dealt with independently. We present an algo-
rithm that constructs a connected set of active nodes and
we assume tree-structured communication [30] to gather
data at the data sink.

IV. MAINTAINING CONNECTIVITY AND COVERAGE

Our initial goal is to ensure that, in a dense deployment
of sensor nodes, a sufficient number of nodes remain
in the active state at any time instant to ensure sensing
coverage and network connectivity. Other nodes in the
network can transition to the inactive state and conserve
energy. Apart from requiring that nodes know their location
(see Model), we assume that nodes employ some light-
weight time synchronization mechanism. We divide time
into discrete activity intervals and each node, according
to a decentralized decision-making policy, decides to be
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active or inactive in that interval. Only active nodes can
participate in sensing, processing, and communication. A
node can communicate only with neighbours that are also
active.

The network has a distinct base station and all nodes
should be able to send data to the base station. The base
station is assumed to be active during all activity intervals.
An active node should either be a neighbour of the base
station or should have at least one active neighbour that
has a path to the base station.

To ensure sufficient coverage of the sensor field, we also
require that every node (active or inactive) have at least one
neighbouring node that is active in each time interval.

We generalize the connectivity and coverage require-
ments through a parameter γ. γ is the number of nodes that
must be active in the neighbourhood of any sensor node v .
γ= 1 provides basic connectivity and coverage while γ > 1
is useful when more robust coverage and fault tolerance is
required. The value of γ has a direct relationship with the
fraction of nodes we want to be kept active at any time
instant. In section IV-G, we will discuss more about the
methods for deriving γ.

The properties that should be satisfied by the decentral-
ized activity planning algorithm can now be listed:

• Each node v with γv neighbours must have at least
min(γ,γv ) active neighbours at any time instant. When
deployments are dense γv � γ.

• The algorithm will guarantee node coverage – all active
nodes will be connected and every node (active or
inactive) will have an active neighbour.

• To ensure load balancing among nodes, the set of
active nodes will change from one activity interval to
the next.

A. Decentralized activity planning

We now present a simple randomized scheme that pre-
serves the properties we desire. Randomization ensures that
the set of active nodes changes between activity intervals.
The following steps are executed at each node v in the
network. Our scheme requires that every node v transitions
to the active state at the end of every activity interval,
negotiates with its neighbours and then determines its state
for the next activity interval.

The following steps are followed at every node v :

1) Pick a random ballot bv where bv is a real number in
the set [0, 1].

2) Broadcast bv and receive the ballots from neighbours.
The neighbours are denoted by the set γv . Let the set
of ballots received be Bv .

3) Broadcast Bv and receive Bw from each w ∈ γv .
4) If |γv |< γ or |γw |< γ for any w ∈ γv , then stay active

and terminate the planning phase.
5) Compute Av = {w |w ∈ γv and bw <bv }.
6) Transition to the inactive state if the following two

conditions are true, else stay active.
• Any two nodes in Av are connected either directly

themselves or indirectly through some node w
within v ’s two-hop neighbourhood such that bw <
bv .

• Any node in γv has at least γ neighbours in their
Av .

We shall refer to the algorithm just described as Algorithm
CC (connectivity and coverage). We shall now discuss the
correctness of this algorithm and then derive bounds on
the sub-optimality of the algorithm.

B. Correctness

Theorem 1: Algorithm CC ensures that any node v has
at least min{γ,γv } active neighbours.

Proof: When γv < γ, then none of v ’s neighbours will
transition to the inactive state. When γv ≥ γ then we shall
establish the result by contradiction. Assume that for i ≤ γ
the neighbour of v with the i th lowest ballot transitions to
the inactive state. Call this neighbour w . Aw will have at
most i − 1 nodes that are neighbours of v . Since i − 1< γ,
w cannot transition to the inactive state thus resulting in
a contradiction.

Theorem 2: If the original graph was connected then
Algorithm CC results in a connected graph.

Proof: We shall establish this result by contradiction.
Suppose that the output graph is disconnected. Add the
deleted nodes back in the graph in ascending order of
their ballots, and let v be the first node that makes the
graph connected. By the time we add v , all members of
Av are already present. Moreover, nodes in Av are already
connected since they are connected by nodes with ballots
at most bv . Let w be a node that was disconnected from
Av but gets connected to Av by v . This contradicts the rule
that v can sleep only if all its neighbours (including w ) are
connected to at least γ nodes in Av .

C. Bounding the sub-optimality of algorithm CC

The problem of maintaining coverage and connectivity
in a graph (network) even for the special case of γ = 1 is
NP-complete. This is seen by noting that the problem when
γ= 1 reduces to the minimum dominating set problem that
is NP-complete. A natural question to answer then concerns
bounds on the sub-optimality of the proposed algorithm.
More specifically, if the number of nodes kept active by an
optimal algorithm is aop t , we would like to know how far
a c c , the number of nodes kept active by Algorithm CC, is
from aop t .

Obtaining a bound on the sub-optimality is difficult in
the general setting but we will study the particular setting
when all nodes can directly communicate with all nodes
that are within a surrounding disc of radius r and when
node density is sufficiently high.

Theorem 3: For any γ ≥ 1, suppose n nodes are placed,
uniformly at random, within a region such that each node
has (on average) at least 4(γ+ log n ) neighbours. Then, with
high probability, a c c =O(log n )aop t .

Proof: We shall find a lower bound on aop t and an
upper bound on a c c so as to estimate the sub-optimality
of Algorithm CC.

Let G be the graph of all nodes and let ν = 4(γ+log n ) be
the average node degree in G . Applying Chernoff bounds,
with high probability, ν/4≤ γv ≤ 4ν .

Let Gop t be the graph that is produced by an optimal
algorithm. This graph contains all nodes in G but all edges
involving two inactive nodes are deleted. In Gop t , each node
has at least γ neighbours and therefore the number of edges



4

in Gop t is at least nγ/2. Further, since nodes in Gop t have at
most 4ν neighbours, the total number of edges is at most
4νaop t . Therefore, we have

4νaop t ≥ nγ/2 =⇒ aop t ≥ nγ/(8ν ).

Consider j =Cγn log n/ν for some appropriate constant
C and run Algorithm CC on graph G . Let b be the j th
smallest ballot selected by a node in G . We apply a lemma
(Lemma 1) and note that all nodes that drew a ballot greater
than b are inactive w.h.p.. It is possible that some nodes
will ballots less than b j may also be inactive but this claim
is sufficient to establish a bound on a c c , w.h.p.

By this claim, we have a c c ≤ (Cγn log n )/ν =
(8C log n )·nγ/(8ν ) ≤ (8C log n )aop t . Therefore, a c c =
O(log n )aop t , w.h.p..

We shall now state and prove the lemma that we applied
in the proof of the sub-optimality theorem.

Lemma 1: When we run Algorithm CC on a graph G , for
some constant C , let j =Cγn log n/ν and let b be the j th
smallest ballot drawn by a node in G . W.h.p., all nodes with
ballots greater than b are inactive.

Proof: We can view the process of constructing G as
one of first selecting node ballots and then placing the
nodes at random. Let v be a node with a ballot that is
not in the bottom j ballots. Let Dv be a disc of radius r
around v . The average node degree is ν , and therefore we
have that each node is placed in Dv with probability ν/n .
Let Av be the active nodes around v and let A ′v be the
nodes in Av with ballots in the top j ballots. Then, |A ′v |
is distributed according to a binomial(j ,ν/n) distribution.
Applying Chernoff bounds, w.h.p., there are at least x =
j ν/(4n ) = (Cγ log n )/4 randomly placed nodes in Dv that
have ballots less than b (and hence have ballots less than
bv ).

Consider any two nodes u and w in Av , and let Du

and Dw , respectively, be discs of radius r around these two
nodes. Define Dv /2 to be the disc of radius r /2 around v ;
two nodes in Dv /2 will be neighbours. Because u and w
are in Dv , the areas of overlap between Du and Dv /2 and
between Dw and Dv /2 are each at least 1/12 of the area of
Dv . Using the fact that |A ′v | ≥ x is logarithmic size, at least
one node u ′ (w ′) lies within the intersection of Du and Dv /2

(Dw and Dv /2). Additionally, u and w are connected by the
path u ↔ u ′↔ w ′↔ w . The expected number of nodes
in A ′v that fall in the intersection of Du and Dv is at least
x/3. Hence, using Chernoff bounds again, w.h.p. any node
u in Nv has at least γ neighbours from A ′v . Thus, w.h.p., all
the conditions for node v to transition to the inactive state
are satisfied.

D. Energy optimizations

The decentralized activity planning method we have
proposed is effective in providing coverage and connectivity
in a sensor network deployment. It however requires local
communication at every decision epoch. Every cycle, a node
has to communicate its ballot value bv and the set of
received ballots Bv to all its one-hop neighbours γv . In
order to restrict this overhead, every node v should be
provided with:

1) The set of random number generator seeds Rv that
is used to generate ballots bv for all its one-hop
neighbours γv .

2) The set of random number generators Rw from each
w ∈ γv .

This indicates that every cycle, each node can calculate bw

and Bw for all its neighbours which relieves it from having
to communicate the ballot values. Since computation is a
much cheaper operation than communication [4], we end
up being energy conservant.

E. Sleep scheduling in the communication disc model

A further optimization in Algorithm CC IV-C can be
achieved in case the sensor nodes are placed along plain
grids. In such regular distributions, it is easy to divide the
area into smaller sub-grids and try to maintain connectivity
and coverage in each sub-grid. Since we are now applying
our optimizations in smaller sections of known dimension
and density, better results can be obtained.

In this optimization method, we divide the entire sensed
region into smaller sectors. The sector size depends on the
communication range of the nodes and are designed such
that all nodes in the sector would be a one or two hop
neighbour to each other. This can be easily ensured using
the communication disc logic where each node v has a
communication disc Dv . Due of the regular grid pattern, we
can ensure a certain number of nodes to be present in each
node’s Dv and hence decide on a sector size that asserts
our assumption. Since our algorithm maintains coverage
and connectivity in each sector, adjacent sectors can be
assumed to be connected through one or more nodes. This
makes it possible for each sector to act as an autonomous
group and optimize behavior within itself. The connectivity
and coverage algorithm inside each sector is similar to
the decentralized activity planning algorithm with a few
simplifications. Decision for the number of nodes to be
kept awake in a sector is made based on the value of γ
as it was done in the previous algorithm. For each node in
the sector, there must be at least γ active neighbours.

In this model, each node v

1) Is provided a random number generator seed rv which
is used to generate its ballot bv .

2) Keeps track of the seed of all other nodes in its sector,
Rv .

3) Calculates the set Bw for each w ∈ γv .
4) If |γv |< γ or |γw |< γ for any w ∈ γv , then stay active

and terminate the planning phase.
5) Remaining steps are the same as in the CC algorithm.

This distributed algorithm does not involve message
exchange between the nodes and hence remains energy
efficient. After certain intervals, which are usually long,
the nodes exchange heartbeat messages to sync their seed
information with other nodes in the same sector.

F. Simple coverage scheme

The previous schemes are valuable in case strict coverage
and connectivity between the nodes is necessary. However,
if strict coverage is not required, a simpler scheme might
prove useful. We call this our Simple Coverage Scheme. In
this scheme, each node v :

1) Is provided with a random number generator seed
rv , which is used to generate its random ballot bv (a
positive integer in this case).
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2) Is provided with a set of random number seeds from
all other nodes in its sector, Rv . (Similar to the sub-
grid optimization, the nodes are divided into sectors.)

3) Is provided with λ, λ= 1/ f where f is the fraction of
nodes desired to be active for the application. Once
a node generates its ballot bv , it performs modulo
operation with λ to decide whether to wake up or
not. (For example, if bv mod λ= 1, wake up.)

4) If bv mod λ 6= 1,
• Compute Av = {w |w ∈ γv and rv mod λ= 1}.
• Compute Cv = {w |w ∈ Av and |Aw |= 0}.
• If |Cv |= 0, then sleep.
• If |Cv | > 0, for each w in Cv check all possible

neighbours in the sector that can wake up to
become a neighbour of w . If bv is the lowest
among all neighbours which are not a part of Av ,
wake up, else go to sleep.

The Simple Coverage Scheme reduces computation for
active nodes in each cycle compared to the sub-grid opti-
mization. It also involves minimum communication, similar
to the sub-grid optimization. However, this algorithm can
only guarantee basic connectivity, as it does not ensure
nodes with multiple active neighbours. Coverage is main-
tained through randomization.

G. Finding the value of γ

While using the decentralized connectivity and coverage
algorithms, we based our assumption on the fact that
the system has knowledge about γ, the number of active
neighbours for each sensor node. However, calculating the
value of γ is complicated and requires knowledge of several
parameters. The value of γ is critical to the amount of
energy savings, the accuracy and robustness of the sensor
network deployment. To decide on a value of γ, we provide
two simple strategies. Depending on the information avail-
able during deployment, we can use one of the following
techniques to judge and distribute a value of γ to all the
sensor nodes.

We present detailed description of the strategies that can
be used to calculate γ.

The average neighbour strategy: In this method, we
need knowledge of the percentage of nodes that are re-
quired to stay active for every cycle. This fraction value f is
generally derived from compressed sensing V or calculated
from the intended lifetime of the sensor network applica-
tion. In this strategy, we must derive the average number
of neighbours for a node in the network. This can be
done at the set-up phase, if all nodes broadcast their one-
hop neighbour count γv to the sink. The average number
of neighbours, γa v g can be calculated from the values of
γv transmitted to the sink. γ can then be calculated as:
γ = | f × γa v g |. Generally, in a deployment which provides
a duty-cycling option, we can expect that the value of
γ� γa v g .

The fraction neighbour strategy: This is similar to the
average neighbour strategy. We must derive the value of
f as was done in the previous method. This value of f
must then be distributed to all nodes in the network. Each
node calculates its own γ from its neighbour count γv as:
γ = | f × γv |. An important outcome of this scheme is that
it results in different values of γ for different nodes in the
network. This is contradictory to our connectivity strategy

which assumes that the value of γ is fixed. However the
CC algorithm can easily accommodate variable values of γ.
All steps in the CC Algorithm remain the same except for
the 2nd part of the last step (6) where each node needs
to check if each of its neighbour have their individual γ
number of neighbours awake for a particular cycle.

V. COMPRESSED SENSING BASICS

Having discussed how we can maintain connectivity and
coverage in conjunction with sleep scheduling, we now con-
sider the use of compressed sensing for data reconstruction
in certain sensor network applications. The advantage of
compressed sensing is that we can reconstruct the reading
of the inactive nodes in the sensing field with high accuracy.
This allows us to deactivate a larger number of nodes while
duty cycling and extract higher energy saving. Compressed
sensing [11] relates to the problem of solving a system of
under-determined linear equations where the solution is
supposed to be sparse, i.e., y = Ax , where x is a sparse
signal.

In the above equation, y is a compressed version of x . x
can be considered to be a one dimension vector of length N
while A is a matrix of size M × N , with M <N . In general,
an under-determined system has infinitely many solutions
but it has been shown that if the solution itself is sparse, it
is typically unique. Given enough time and computational
resource, it is possible to solve the said problem by a brute
force search. Mathematically it is represented as:

m i n ||x ||0 subject to y = Ax
Unfortunately this is an NP hard problem [11]. However,

solving the inverse problem by this method requires lesser
number of equations. Compressed Sensing has proved that
the said inverse problem can be solved by the following
convex relaxation of the NP hard problem,

m i n ||x ||1 subject to y = Ax
The l 1-norm is the tightest convex envelope of the NP-

hard l 0-norm. This optimization problem can be solved by
linear programming. It has been shown that intermediate
between the NP hard (l 0-norm) problem and its convex
relaxation (l 1-norm) lies the following non-convex relax-
ation [8],

m i n ||x ||p subject to y = Ax, 0< p < 1
It is possible to solve the above non-convex problem and

the number of equations required to solve it is intermediate
between the NP hard (l 0-norm) and the convex (l 1-norm)
problem. The only issue theoreticians arise is that the non-
convex problem may not converge to a global minima.
However, practically this had never been the problem and
this sort of non-convex methods give much better results
than their more popular convex counterparts. Our evalua-
tion results confirm this fact.

Practically, the actual signal is never sparse, but has a
sparse representation in the transformed domain (Fourier,
DCT, Wavelet etc.). In such a scenario, the inverse problem
can be framed as,

y = AS’z
where z = Sx, x = S’z, S being the sparsifying transform.

Therefore the corresponding optimization problem is:
m i n ||z ||1 subject to y = AS’z
This formulation has been the basis for nearly all com-

pressed sensing applications in signal processing.
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From the data acquisition perspective, the reading from
all the N nodes in the network is represented by x. The sink
will receive only readings from the sensors that are active,
which is the vector y. Since the sink has knowledge about
the nodes that has transmitted, it would have information
of the transformation matrices and hence can compute the
original matrix x from the transmitted values.

VI. EXPERIMENTS

A. Evaluation of connectivity algorithms

In order to test the coverage and connectivity algorithms,
we built a simple simulator. The simulator accepts the
co-ordinates of all the nodes in the network and the
desired fraction of awake nodes as inputs. To test the CC
Algorithm, we select a random placement of nodes over
a sensing region. For the sub-grid optimization and the
Simple Coverage Scheme, we consider a regular grid struc-
ture. We consider average neighbour strategy for neighbour
assignment.

We ran experiments to verify effectiveness of the Simple
Coverage Scheme. The simulator first outputs the initially
active nodes and then the nodes that needed to wake up
in order to maintain connectivity (Fig. 2).

We also conducted tests to compare the performance
of our different connectivity and coverage algorithms. We
found it difficult to compare our scheme with other con-
nectivity algorithms since most of them have different
objectives. Different objectives arise from the fact that the
parameters we provide to our algorithm is unique and
different from any other algorithm. To provide a simple
comparison, we considered two different flavours of our
algorithm – the CC Algorithm and the Simple Coverage
Scheme. Each of them accept similar inputs but work
differently. Such a comparison help users to decide which
algorithm they want to implement.

In order to compare performance, we choose the number
of awake nodes produced by each algorithm at the end
of a cycle as the metric. For the same input parameters,
the algorithm producing the lower number of nodes to
maintain connectivity is an obvious winner. However, it is
not clear which algorithm performs better as we can see
from our experiments with the test data (Fig. 3). It seems
from the results that the Simple Coverage Scheme generally
performs better than its counterpart when the number of
neighbour is high. It is upto us to decide the algorithm to be
used. However, depending on the topology of the network
and the required sparsity, a conscious decision can be made
based on our results.

We also tested the bounds of the CC algorithm at different
concentration of nodes in the sensing region. The same
experiment would also establish the fact that the size
and density of the network would stress the performance
of our CC algorithm. In order to test our algorithm, we
considered a 256 by 256 grid and varied the density or
number of nodes in the area. For each node density, we
varied the value of γ to see how the CC algorithm would
react to varying application demands. As expected, the
results (Fig. 4) conform to an increased number of awake
nodes as the deployment becomes sparser. The number
of neighbours for a given node, γv decreases with sparsity
and we see that from some point, all nodes need to stay
awake to support the value of γ set for that network. We

Fig. 4. Fraction of total nodes vs total number of nodes at different values
of γ

also illustrate that the fraction of nodes that are awake also
increases as γ is increased.

1) Connectivity test: To prove that the connectivity algo-
rithm is effective in reducing discontinuities in the network,
we added a module to our simulator to test connectivity. In
this test, we consider the same set of nodes that was used
to illustrate the connectivity and coverage algorithm. At the
end of a given cycle, we randomly pick nodes and test if
there is a path to the sink from this node. The algorithm
works in accordance to the following steps:

• For the randomly chosen node, find all awake neigh-
bours in transmission range. Let the awake neighbours
for node v be represented by a set Av .

• For all w , w ∈ Av , calculate their distance d w from the
sink S.

• Choose a neighbour node ws such that for all w , w ∈
Av ,d w is the minimum.

• Replace v with ws

• Continue till v or ws is a neighbour of the sink, S.
• If there is a break in any of the above steps, connec-

tivity is not maintained.

We ran exhaustive tests on the nodes to prove that all
our connectivity algorithm does not leave behind isolated
nodes.

B. Evaluation of compressed sensing

Once connectivity and coverage issues are factored in the
network, we conduct experiments to test the effectiveness
of compressed sensing for reducing energy consumption
in sensor networks. To apply compressed sensing, we test
our data acquisition scheme on synthetic as well as real
data traces. We first describe how we generate the test
data and then apply compressed sensing techniques to
interpolate missing data. We present detailed graphs to
show how applications would decide on their compressed
sensing parameters.

1) Data generation: We use data generation techniques
used to obtain synthetic traces. There has been a lot
of research aimed at generating accurate sensor network
traces since having an actual deployment is not always
feasible. We choose one such tool developed by Jindal et
al. [18] to build our datasets. The method for generating
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(a) Before Connecting (b) After Connection

Fig. 2. The first figure shows the sensors that were turned on in a particular instant. Blue dots represent inactive sensors and reds indicate active
sensors. The first figure represents the first phase of coverage where random nodes are selected for wakeup. The second figure is similar to the first
except that the connectivity algorithm has been applied on it, hence a few extra sensors can be found awake. The sensors marked with grey circles
indicate some of the sensors that were awaken by the connectivity algorithm.

(a) Transmission Range=2 (b) Transmission Range=4

(c) Transmission Range=8

Fig. 3. The three figures compare the performance of the simple coverage scheme and the decentralized activity planning algorithms. In all the figures,
plots of total number of awake nodes are made against the fraction of nodes which are awake for different values of γa v g . All nodes were placed on
a 256 by 256 unit length grid with a total of 829 nodes placed randomly. To test the system for various different kinds of deployment, plots have been
made for different transmission range for the nodes which results in a different average number of neighbours. The first figure has been plotted for
average number of neighbours = 9 with transmission range = 2 units. The second and the third figure have been plotted for transmission range = 4
and 8 units respectively.

these synthetic traces have been validated against sen-
sor traces from actual deployments such as the Intel lab
data trace [17] and the S-Pol radar dataset [26].The data
generation tool follows a mathematical model to capture
the spatial correlation in sensor network data. The tool
can be used to generate a wide range of synthetic traces
showing different levels of correlation. We use different
levels of correlation between the network data to simulate

a wide range of possible deployments. Correlation among
data translates to different physical phenomenon being
monitored. As it seems evident, a major advantage of using
a synthetic data generator is that it can mimic several types
of sensor network applications. Actual data only covers one
example of data that it monitors. Apart from this, a synthetic
generator can create a large or a small network in terms
of number of nodes which can test out the compressed
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sensing algorithm thoroughly.

2) Results: We used the synthetic data generator from the
previous discussion to generate the sensor data and used
compressed sensing to retrieve back missing values from
the sensor data. In our experiments, we tried to change the
correlation between data in each of the synthetic datasets
and also tried changing the value of P during reconstruction
to test the accuracy of reconstruction at various values of P .
For each of the different values, we plotted the normalized
mean square error versus the fraction of sensor values being
used for reconstruction.

For highly correlated data, the NMSE is similar for dif-
ferent values of P if we have 20 percent of the sensors
sending back data to the base station. Beyond this point,
P=1 produces increased error compared to lower values
of P (Fig. 5). For medium and low correlations, we can
see that as the correlation of the data decreases, the NMSE
increases. For most of the cases, having the value of P below
1 shows lower reconstruction error. Beyond the point where
80 percent of the sensors are missing, P=1 produces much
higher reconstruction error compared to lower values of P .

We demonstrate the change in error with varying corre-
lation values (Fig. 6 and 7). It is evident that with higher
correlation, the NMSE is lower. Also lower values of P give
better results compared to P=1.

From the results presented in Fig. 8, we can see that
though the correlation among data points is not too high
yet with 20 percent of the nodes sampling, we get a near-
exact reconstruction of the original signal.

Regardless of the values of P and the correlation factors,
one fact is evident from the results. For most sensor
network deployments, we can take readings from a small
fraction of nodes and reconstruct the missing node values
without sacrificing accuracy. The fraction of nodes that is
required depends on the error tolerance for the application.
However, as we can see from our results, if 20% of the
nodes in a deployment send back data to the base station,
we can reconstruct the readings from all other nodes with
very small reconstruction error, given we have a sufficiently
large dataset. With this mechanism, energy consumption in
nodes can drop to one-fifth of traditional data acquisition
methods in sensor networks. We can expect the life time
of each node to be 5 times longer than usual which is
enormous compared to current standards.A question that
remains unanswered is the overhead at the base station
for running our reconstruction algorithm. Is it possible to
run frequent reconstructions every time the sensors send
back data? Overhead at the base terminal is quite critical
as it determines the frequency with which the sensors
can operate. If the time taken to reconstruct the missing
values is really large, it impacts the frequency at which
readings can be taken. Since the time for reconstructing the
data at the base station is proportional to the size of the
network, a large network will require larger reconstruction
time than a smaller network. Needless to say, reconstruction
time will also depend on the processing hardware. The
application developer must decide the sampling frequency
of an application while keeping these details in mind.

3) Actual data: Testing with synthetic data provides us
with very accurate results even when the percentage of
active sensors is low. To test the system on actual data, we
ran compressed sensing on on actual sensor data. This gave
us insight to expected results when compressed sensing is

applied on real applications. We tested our algorithms on
wifi data collected at the Stevens Campus and published
in [23]. Since the actual values of the sensors were not
available, we decided to scale down the image to a 32
× 32 grid and ran compressed sensing reconstruction on
it. Fig. 9 shows the actual scaled and the reconstructed
versions of the wifi data. The reconstruction is done with
10 percent active sensors and P = 0.8. Though the mean
squared reconstruction error is 14 percent, as the number
of sensors is increased to 20 percent, the error drops to 7
percent.

It is difficult to compare our improvement in efficiency
with other wireless systems. In several other wireless appli-
cations, efficiency is measured as throughput of the network
per joule of energy consumed [25]. However, such a metric
is not appropriate for defining efficiency of our compressed
sensing algorithm. In our case, throughput is measured
through the accuracy of the reconstructed data while energy
cost is measured through the fraction of nodes kept awake.
To gain higher throughput or accuracy of reconstruction, a
larger fraction of nodes need to stay awake.

VII. LIMITATIONS OF COMPRESSED SENSING

We have managed to demonstrate a data management
scheme that can lead to huge savings in many sensor
network deployments. For WSNs that monitor some natural
phenomenon with smoothly varying distributions, com-
pressed sensing can produce multi fold increase in life
time of individual nodes. Though most sensing applications
fall under this category, a few may not. For example,
an intrusion detection system which needs to be highly
reliable may not be the best application where compressed
sensing can be applied. Also, systems that generate ex-
tremely random signals cannot apply compressed sensing
due to low correlation in the generated signal. Localization
applications which try to track objects [27] do not fit
well into the compressed sensing model as it needs to
act instantaneously and every data sample is of utmost
importance.

Further, the compressed sensing system needs a suffi-
ciently large network to work. For example a grid having
20 nodes may not be the best network to test compressed
sensing. Since we mainly focus on natural phenomenon,
we assume that the network would be sufficiently large to
allow our algorithm to select a low percentage of nodes and
reconstruct without significant error.

VIII. CONCLUSION

We have presented a framework that can be used to
elongate the life of a sensor network deployment. We have
proved that our CC Algorithm is near-optimal and suc-
cessfully maintains coverage and connectivity in a sensor
network. Combining our CC Algorithm with compressed
sensing, we promise significant energy savings along with
robustness over a well connected selection of sensor nodes.
Experimentally, using simulation and test data, we have
demonstrated the effectiveness of our scheme. We have
also provided hints at how to employ our system on actual
sensor software. The next big step for us would be to test
our scheme on an actual system. A large deployment with a
significant number of nodes which monitors some physical
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(a) Low Correlation (b) Medium Correlation

(c) High Correlation

Fig. 5. Normalized mean square error versus fraction of sensors transmitting data for various correlation values.

Fig. 6. Normalized mean square error versus fraction of sensors transmitting data for various value of P (P=1,0.8).

Fig. 7. Normalized mean square error versus fraction of sensors transmitting data for various value of P (P=0.8,0.6).

phenomenon having significant correlation would be the
ideal platform to demonstrate our scheme.

Two important aspects of our scheme are simplicity and

effectiveness. We have made our scheme as simple as
possible such that it can be easily adopted. From the point
of effectiveness, we point out the amount of energy savings
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(a) Original Data (b) Sampled Data (c) Recovered Data

Fig. 8. The first figure shows the original data. The second image is the sampled data with 20 percent of the sensors sending back data to the base
station. The third figure shows the recovered data using our reconstruction algorithm.

Fig. 9. Scaled and reconstructed wifi signals from the Stevens Campus. Only 10 percent of the nodes’ data is used for reconstruction.

leading to increased lifetime of sensor nodes that can be
extracted using a combination of our CC Algorithm and
compressed sensing. Such energy savings are not possible
using other micro optimization techniques.
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Abstract—The problems of implicit and invalid assumptions have 

been identified as one of the key reasons to project and software 

failures. Assumptions are available in almost all aspects of the 

software development from human factors to different software 

development activities. They also have influence on software 

quality attributes. The aim of this article is to provide a review of 

existing work in assumption management and find out the 

assumptions related challenges that should be mitigated in order 

to build better systems. The results show that assumptions are 

concerned with many different areas of software engineering and 

that existing approaches suffer from the lack of scope of 

assumptions categories and some concerns that are impacted by 

the assumptions. We believe a holistic assumption management 

approach can mitigate assumptions related challenges by 

integrating concerned areas and contribute to build systems with 

smooth software integration and evolution. 

Keywords- assumptions; assumption management; software 

evolution; software and system integration; cyber-physical system 

I.  INTRODUCTION 

Today’s Cyber-Physical Systems (CPSs) intrinsically 
combine many domains and areas of expertise in order to 
achieve system goals and maximize the benefit. This demands 
significant interactions among people, environment, software, 
and hardware artifacts, which in turn dramatically increases the 
complexity of the system. The maximum number of concerns 
that the human brain can consciously process at the same time 
is limited. It is thus challenging for the software and system 
developers to consider all significant assumptions and 
constraints among various components to make good decisions.  

An assumption is a statement that is assumed to be true and 
it is invalid when the assumed statement is actually not true. 
Assumptions are implicit when they are not documented. 
Assumptions can be implicit in at least two ways. First, when 
people are aware of the assumptions but do not document them 
because of lack of consciousness about the pitfalls of implicit 
assumptions or due to political reasons within the organization. 
Second, there is no awareness of the (implicit) assumptions 
among the stakeholders/people. Implicit assumptions thus 
represent tacit knowledge, which has been identified by the 
knowledge engineering discipline [10] as volatile and 
challenging to preserve and transfer.  

When implicit assumptions are not documented, they get 
lost over time. This might happen due to that the architects 
forget about the assumptions they made in the past, or that the 
architects are not available at present. The gradual loss of 
architectural knowledge is a problem in the area of software 
architecture and this problem is known as architectural erosion 
or architectural drift. This scenario is also applicable for 
requirements, coding, and testing.  

Invalid assumptions are reported as the root cause of 
system and project failure [17, 40, 8]. In practice, people do not 
make invalid assumptions intentionally or because of lack of 
knowledge. Today’s systems often work in a complex dynamic 
environment with the presence of reusable components. Along 
with many benefits, reusable components also bring certain 
challenges. As COTS are developed to work in different 
environments, they generally do not offer a perfect match with 
a specific use. The use of a system as a part of a larger system 
is common as it is not feasible to build everything from scratch. 
However, a system is not always built with the intention of it 
being used as a part of a larger system. Moreover reusable 
components, COTS, middleware might have their own sets of 
assumptions that are implicit or not visible to the people using 
them. Hence, people can make assumptions about different 
components that are conflicting, or mismatched, with existing 
assumptions. The development of complex systems deals with 
various domains where every domain has its own practices. 
However, in reality an organization cannot always adopt 
necessary software practices of the particular domains they are 
engaged with. Thus, an organization might apply their existing 
software practices onto a new domain. 

The review shows that there is a broad landscape of 
assumptions and several challenges have been recognized in 
certain areas. Initial work has been conducted to address some 
challenges, but we observe that there is a lack of integrated 
approaches toward systematic assumption management. 
Successful mitigation of these challenges would indeed support 
virtual integration of components, continuous deployment, and 
more loosely coupled CPSs development. 

The organization of this report is as follows. Section II 
defines assumptions and some assumptions types used in this 
article, and explains how requirements, constraints, 
assumptions, and design rationales are connected to each other 
in an interchangeable way. Section III shows the literature 



review of assumptions in software engineering. The challenges 
of assumptions are presented in section IV followed by the 
summary. 

II. BACKGROUND 

A. Definition of Assumption 

The WordNet1 lexical database defines the term assumption 
as follows: 

- “A statement that is assumed to be true and from which a 
conclusion can be drawn”. Example: “on the assumption 
that he has been injured we can infer that he will not 
play”. 

- “A hypothesis that is taken for granted”. Example: “any 
society is built upon certain assumptions”.  

- “The act of assuming or taking for granted”. Example: 
“your assumption that I would agree was unwarranted”. 

Now we define some assumptions types used in this paper. 

Invalid vs. Valid assumptions: An assumption is considered 
invalid if a stated assumption is false or incorrect; it is valid 
otherwise, i.e., the stated assumption holds. The 
validity/invalidity of an assumption can most often be 
determined by verifying its fact without necessarily looking at 
any other assumptions. On the other hand, conflicting and 
mismatched assumptions are determined from the conjugation 
of more than one assumption. 

Conflicting assumptions: An assumption is conflicting, if it 
contradicts or conflicts with one or more other assumptions. It 
can be both invalid and valid. 

Mismatched assumptions: An assumption X is mismatched, 
if we cannot determine whether the associated 
components/artifacts of X would fulfill the fact of X. In other 
words, there is no evidence provided by the 
components/artifacts that could be matched against what is 
assumed. It can be both invalid and valid. 

B. Requirements, Constraints, Assumptions, Design 

Rationale  

It is difficult to distinctly divide requirements, constraints, 
assumptions, and design rationales as they often overlap each 
other. Sometimes these terms are used interchangeably [27] 
and sometimes broadly [19] to extend the coverage of their 
definition. In general, requirements are the expectations of the 
customers about a system. Constraints are facts that impose 
restrictions, limitations, regulations on a system. In a classical 
sense, requirements and constraints are sets that both the 
software development organization and the customers agree 
upon. Requirements and constraints can be both functional and 
nonfunctional and it is a common organizational practice to 
document them. 

                                                           
1
 Website: http://wordnetweb.princeton.edu/perl/webwn 

Assumptions are statements that are assumed to be true. 
Assumptions build the underlying reasons behind the decisions 
where a decision can be an architectural decision etc [35]. 
When decisions along with their underlying assumptions are 
implemented, assumptions act like constraints by restricting, 
limiting, and regulating the system. From this point of view, 
assumptions and constraints are similar. However, assumptions 
can be invalid from the very beginning of their existence, 
which is not applicable for the constraints. On the contrary, 
both assumptions and constraints can be invalid at any time in 
the future when the system evolves.  

Design rationales are the motivations of design decisions 
where a collection of design decision explains why an 
architecture is in a certain form. Kruchten et al. [35] do not 
distinguish between assumptions and design rationale since it is 
difficult to make a clear distinction and consider assumptions 
as general denominator for the forces driving architectural 
design decisions. Both assumptions and rationales can be 
considered as elements of design decision [43]. In contrast, 
assumptions and constraints can also be considered as elements 
to capture design rationales [21].  

III. ASSUMPTIONS IN SOFTWARE ENGINEERING 

Figure 1 shows how assumptions can be scattered in 
different software development phases and still connected. A 
single assumption can be associated with artifacts at different 
levels. The scenario becomes much more complicated when 
assumptions are connected with requirements, design 
decisions, design rationales and other possible knowledge 
categories that are influenced by the assumptions. This review 
also finds assumptions in different areas of software 
engineering. Among them, software architecture is the area 
where assumptions are mostly used. Some work is directed 
toward implementations. Work has also been conducted in the 
security domain, especially at the requirements engineering 
level, as well as in the architectural knowledge management 
areas; here most often assumptions are treated informally in the 
form of free text. 

This section first presents different assumptions modeling 
approaches then architectural mismatch problems due to the 
assumptions, followed by assumptions in the area of 
requirements engineering and software security. The end of 
this section focuses on assumptions in the knowledge 
management discipline and software development processes. 

A. Assumption Modeling 

There have been attempts on modeling assumptions. We 
have divided them into two classes that are formal and semi-
formal. By formal, we mean those modeling approaches that 
formalize the statement or the fact of an assumption along with 
other attributes. Approaches that describe the fact/statement of 
the assumptions as free text but other attributes like assumption 
category description, source, impact, criticality, tractability 
information etc are structured are termed as semi-formal.  

 



 
Figure 1.  Assumptions in Software and System Development 

The idea of informal assumptions modeling is not so 
appropriate. However, we can say assumptions are informal 
when they are documented without proper structure, 
completely in free text in the form of comments. The 
advantage of formally modeled assumptions is that they are 
potentially machine-checkable. However, formal approaches 
have suffered from limited scope, as it is challenging to 
formally model assumptions of concerning, e.g., managerial 
and environmental aspects. 

1) Formal Approaches  
A framework toward assumption management has been 

developed by Tirumala [2]. They have developed a language 
for documenting assumptions in a machine-checkable format 
where the assumptions and the guarantees for the assumptions 
are encoded as part of the architectural components. The 
framework is capable of dealing with both the architecture and 
the implementation. In addition to the static assumptions, the 
framework also supports dynamic validation of assumptions. 
Even though, automated checking of invalid assumptions is a 
big advantage for the large-scale, complex system development 
but the scope of the targeted assumptions is limited to the 
technical category. The framework is implemented for the 
Architecture Analysis and Design Language (AADL) [31], 
which is an Architecture Description Language (ADL) 

2) Semi-Formal Approaches 
Lewis et al. [14] have developed a simple assumption 

management system prototype for recording and extracting 
assumptions from code written in Java into a repository. The 
assumptions are written in the code using XML and saved into 
the repository using an assumption extractor. This web-based 

assumption management system offers browsing and searching 
of assumptions with given criteria. The stored assumptions are 
then reviewed by a person who acts as a validator. The 
management system also maintains system and project related 
information like users, roles, projects and types of assumptions. 
The scope of this prototype is limited to assumption 
management at the implementation level. 

A meta-model for explicating assumptions in the software 
architecture has been developed by Lago and Vliet [33]. The 
model is able to handle assumption dependencies between the 
product feature model and the architectural model. They have 
worked with a software product family architecture 
implementing variability to achieve flexibility. They introduce 
the term invariability and argue that invariability should also be 
modeled along with variability to let the model express what 
cannot be changed. As assumptions are somewhat related to the 
constraints that impose limitations on the system behavior, 
assumptions would tell us what we cannot change or what 
would be challenging to change. Thus it is possible to achieve 
architectural invariability through explicit assumptions 
modeling. 

Ordibehesht [16] has implemented an assumptions 
modeling method for explicating assumptions in the AADL. 
The modeling method consists of an assumption specification 
meta-model for structuring assumptions information and an 
assumptions specification approach to specify the meta-model 
together with the architecture descriptions. The meta-model 
contains dependency information between the assumptions and 
the architectural components in order to facilitate traceability.  



B. Architectural Mismatch 

Garlan et al. [8] report that implicit assumptions are the 
root cause of widespread software reuse problems. They used 
the term “architectural mismatch” to express the idea that 
reusable architectural components make implicit assumptions 
on other parts of the architecture without being validated. As 
these assumptions are implicit, they often conflict others thus 
making the system unusable. Since the assumptions are usually 
implicit, it is difficult to analyze them before the system is 
built. They identify four categories of assumptions that can 
contribute to architectural mismatch in terms of components 
and connectors. They are:  

- Nature of the components (control model, data model) 
- Nature of the connectors (protocol, data model) 
- Global architecture structure 
- Construction process (development environment and 

built) 

Even though the authors identify implicit assumptions as 
the root cause of the architectural mismatch and suggest to 
make assumptions explicit, they believe explicating 
assumptions alone cannot completely fight architectural 
mismatch, and thus they suggest additional solutions such as 
use of orthogonal sub-components, create bridging techniques 
like mediators, and develop source of design guidance. 

Garlan et al. [9] have revisited the challenges of 
architectural mismatch with the advancement of time in 
comparison to their previous study. They discuss three basic 
techniques with architectural mismatch namely mismatch 
prevention, mismatch detection and mismatch repairing along 
with the approaches to solve mismatch problems. Trust, 
dynamism, architecture evolution, and architecture lock-in are 
reported as new challenges in this field.  

Cai et al. [25] have proposed an approach to identify 
architectural mismatches resulting from invalid assumptions in 
an event-based system. The semi-automatic approach is 
implemented with a customized version of the model checker 
Bandera/Bogor tool pipeline applied on a Java version of 
SIENA event service. 

Architectural mismatch has been analyzed considering 
assumptions from a different perspective by Uchitel and 
Yankelevich [42]. Assumptions are viewed as connections that 
components make about each other. Here the term connection 
means something beyond the classical sense of connections. 
This view originated from Parnas [11] who extended the view 
of the connections from control or information transfer points 
to components’ associations. Uchitel and Yankelevich [42] 
have performed behavior analysis to detect architectural 
mismatches where a labeled transition system (LTS) is used to 
model process behavior. They also discuss some issues of 
extending ADLs to include assumptions. 

Lemos et al. [36] have focused on architectural mismatch 
tolerance, i.e., an approach that would help the system to 
tolerate architectural mismatches during run-time rather than 
dealing with the mismatches during the development time. 
They apply the general principle of fault tolerance to deal with 
architectural mismatches. 

C. Assumptions and Requirements 

It is generally considered that a large number of 
assumptions lie around the requirements to weave a complete 
picture of the system. Lamsweerde [4] describes this scenario 
as ‘assumptions underlie the requirements iceberg’. Thus 
assumption management is often considered to be closely 
intertwined with the field of requirements engineering.  

Fickas and Feather [41] argue that invalid environmental 
assumptions cause the system to evolve. Therefore, it is 
interesting to know when such assumptions get invalid while 
the system is executing. The concept of this approach is to 
monitor the underlying assumptions of the requirements to 
realize whether the requirements are met by the system while it 
is executing. When certain assumptions are found invalid, their 
corresponding/dependant requirements are considered to be 
compromised. 

A temporal mathematical model has been proposed by 
Miranskyy et al. [1] to describe the relationship between 
requirements and assumptions in the context of risk prediction 
associated with assumptions failure. In the proposed model, the 
relationship between requirements and assumptions are 
captured using a Boolean network. A stochastic process is used 
to model the validity of the system over time. 

D. Software Security 

Assumptions in the security domain are known as trust 
assumptions because trust and trustworthiness build the 
foundations of security [20]. Trust assumptions might have 
significant impact on the system’s security. An example of an 
implicit or explicit trust assumption can be compilers are not 
vulnerable to systems security. However, this assumption can 
be invalid as Thompson [23] shows how the compilers can 
introduce trapdoors to compromise the security of a system. 
Thus it needs to be reviewed for its validity. Viega et al. [22] 
discuss the potential risks of trust assumptions towards the 
software security and the origins of invalid trust assumptions 
like user input, client application, execution environment, 
software developers, users etc. They suggest adopting a general 
assumption management strategy, i.e., assumption 
identification, documentation, and analysis in order to 
minimize the security risks due to invalid assumptions. 

Haley et al. [5] discuss trust assumptions from the view of 
the requirements engineers in the context of security. The 
requirements engineers make assumptions when analyzing the 
security requirements. The scope of the analysis, security 
requirements’ derivation, and in some cases how functionality 
is realized are affected by the trust assumptions. A 
representation of trust assumptions is showed by Haley et al. 
[5] along with a case study to examine the impact of trust 
assumptions on software using secure electronic transaction 
specification. In more recent work, Haley et al. [6] attempted to 
answer to the question “how to determine adequate security 
requirements for a system”. In this work, they considered 
assumptions as one of the three criteria that should be satisfied 
to determine adequate security requirements. A lightweight 
approach for mitigating security risks based on trust 
assumptions is proposed by Page et al. [44] that can be used 
within agile development environments. This work is directed 



toward detection and mitigation of security risks. They 
developed a model where the concept of trust assumptions is 
used to derive obstacles, and the concept of misuse cases is 
used to model the obstacles. 

E. Architectural Design Decision & Rationale Management 

The literature of architectural knowledge identifies four 
primary views on architectural knowledge namely pattern, 
dynamics, requirements and decision-centric view [37]. The 
decision-centric view emerged as the importance of preserving 
architectural design decisions and rationales behind the 
decisions were realized [24, 20], and there seems to be a 
gradual shift of viewing software architecture as the high-level 
structure of components and connectors (i.e. the end result) to 
the rationale behind the end result [37].  

Since an architecture is built based on certain design 
decisions, it is also seen as a collection of design decisions. 
Going a level further down, every design decision is made 
based on some rationales. Thus design decisions along with the 
rationales explain why an architecture is in a certain form. 
Assumptions are considered in both design decision and design 
rationale management. With the change of the perspective, 
something identified as an assumption may be seen as a design 
decision. It should be noted that, e.g., Kruchten et al. [35] do 
not distinguish between assumptions and design rationale as 
they have found it difficult to make a clear distinction. Rather, 
assumptions are seen as general denominator for the forces 
driving architectural design decisions [35].  

Both assumptions and rationales are considered as elements 
of design decision by Dingsøyr and Vliet [44]. They describe 
assumption as the underlying facts about the environment in 
which the design decision is taken and rationale as the 
explanation of why the specific decision was taken. A 
pragmatic approach to capture design rationale has been 
proposed by Tyree and Akerman [21]. They include 
assumptions and constraints along with other elements in a 
template developed to capture design rationale. A rationale-
based architecture model has been developed by Tang [3], 
which represents design rationale, design objects and their 
relationships. The model is able to capture both qualitative and 
quantitative design rationale where assumptions and constraints 
are considered as the drivers of design rationale. Even though 
assumptions are reported as one of the key factors driving 
design decisions and rationales, the discussed literature 
captures assumptions as text in natural language without 
further structure.  

F. Other Work 

Ostacchini and Wermelinger [18] have experimented with a 
lightweight assumption management method on agile 
development over three months with the result that assumption 
management can be integrated with the agile developments. 
They have recorded 50 assumptions where more than 50% are 
organizational or managerial. They suggest engaging the 
management/managers into the assumption management 
process as over 15% of the managerial assumptions were 
identified as invalid during the three months observation 
period.  

Roeller et al. [38] have worked on the recovery of 
assumptions from a system that was built in the past without 
the assumptions being documented. At first, they reviewed 
financial reports, documentations, development process 
information extracted from the version control system and 
source code to identify error prone modules in the studied 
system. Tools were used to extract different metrics from the 
version control data and source code. Furthermore, interviews 
were performed with the architects and the developers to 
discuss the selected modules in order to capture the implicit 
assumptions.  

The authors express that it is challenging to recover 
assumptions from a system without having a thorough 
understanding of the system. Moreover, the unavailability of 
key people and stakeholders, change in responsibilities in the 
project, and identifying the right person knowledgeable to 
specific artifacts are also quite challenging to deal with. 
Similarly, Garlan et al. [8] have reported from their experience 
with AESOP that assumption recovery could be expensive thus 
impractical or even impossible for legacy systems when the 
source code is not available. 

IV. CHALLENGES OF ASSUMPTIONS 

CPSs are multidisciplinary in nature, addressing 
engineering issues at software, system, and mechanical level. 
Furthermore, CPSs demand a lot of interaction among the 
concerned components and environments. They are often also 
highly complex and tightly coupled systems. The development 
of CPSs is also often distributed in nature. Thus, it is unrealistic 
or not feasible to co-locate the entire CPSs development 
process. It is thus desirable to facilitate stronger integration 
approaches, and weaken strong coupling and dependencies in 
the development as well as the architecture level. Powerful 
management of assumptions has a strong potential in 
addressing identified concerns, e.g. the concepts of 
assumptions-aware components and separating assumptions 
from artifacts (section A and B). Other challenges identified 
include evidence-based software engineering (section C) and 
assumptions in the organization’s safety culture (section D). 
The holistic assumption management system (section E) is the 
foundation to manage assumptions in an efficient way 
throughout the entire software development process. 
Assumption-based trust building (section H) concept is 
applicable for human factor trust in global software 
developments thus it would also support the development of 
CPSs.  

A. Assumption-Aware Component Development 

CPSs are characteristically tightly coupled, which incurs 
certain inflexibilities in the system development. It would be 
desirable to develop components more independently, e.g., 
loosely coupled but still composable, which could be facilitated 
through self-descriptive architectural components or executable 
software components. The assumption-aware components 
should be able to describe their own structure and details about 
what the components expects from the other components and 
what the components provide for the other components with a 
standard syntax that is understandable by all the parties. As 
assumptions build the leaf-level knowledge of the artifacts, it is 



possible to encode the inter-component dependencies and 
relationships as assumptions into the components. This makes 
the components assumption-aware and would offer better static 
and dynamic composability of such components by minimizing 
architectural or component mismatches. Assumption-aware 
components would also support the concept of virtual 
integration [32]. When the architecture and its substructures 
(e.g., components) are designed as assumption-cognizant, 
continuous deployment would be possible with the presence of 
monitors that would look for assumption-based conflicts and 
mismatches among the components. During composition, it is 
obvious that architectural mismatches may occur due to 
conflicting or mismatched assumptions that can be mitigated to 
some extent with the architectural mismatch tolerance 
techniques. 

B. Separation of Assumptions from Artifacts 

With the advent of assumption-aware component 
development, COTS and middleware developers would prefer 
to supply the assumptions related to the COTS or middleware 
to the customers without supplying the actual architecture or 
code so that the COTS or middleware can be tested whether 
they are composable with the customers’ system or not. This 
concept also supports virtual integration.  

C. Evidence-Based Software Engineering 

In software engineering, complacency is a challenging 
problem to tackle. People suffer from complacency because of 
the lack of evidence. A study of five major spacecraft accidents 
reports complacency as the root cause of the studied system 
failures [29]. Another extensive study reports “lack of 
evidence” as the key problems of dependable software systems 
[12]. This study also proposes the idea of certifiably 
dependable systems that means a dependable system can be 
certified according to the available evidences supporting the 
dependability claims.  

Assumptions build the leaf-level knowledge and forensic 
evidences of any artifact. They are able to reason why an 
architectural component is in a certain form. They can explain 
why a variable is not memory protected. In fact, assumptions 
make the leaf-level fingerprints of the decisions that we make 
while developing a system. From this point of view, 
assumptions are underlying evidences that can be used as a 
metric to measure the dependability of software components or 
systems. 

D. Assumptions in the Organization’s Safety Culture 

The space shuttle Challenger disaster is a well-known case 
of system failure due to mismatched assumptions. The 
investigation report [40] of this disaster shows why 
assumptions should be added to the organization’s safety 
culture. Before the launch of the shuttle, the engineers warned 
about the mismatched assumptions, which the management 
repeatedly ignored. The flight was already delayed with 
different issues. The management was afraid to delay it further 
probably because project delay negatively shows the efficiency 
of the management. Again, twelve years after the Challenger 
disaster, in 1996, we observed the explosion of Ariane 5 during 
its maiden flight. Such cases suggest considering assumptions 

in the organization’s safety culture. An 
invalid/conflicting/mismatched assumption should be 
considered in the decision support system according to its 
criticality, priority, and impact. Assumption-based hazard 
analysis and Failure Mode Effect Analysis (FMEA) can reduce 
the risks of invalid, conflicting and mismatched assumptions. 

E. A Holistic Assumption Management Approach 

The span of assumptions in software development is not 
limited to any specific phases rather it is widespread. Available 
assumption management frameworks either focus on a narrow 
scope of assumptions types being very formal by modeling the 
assumptions in a machine-checkable format [2] or cover a wide 
variety of assumptions in a semi-formal approach that is not 
automated [33]. Moreover, existing approaches are not capable 
of providing an integrated solution toward assumptions by 
covering different software development phases, domains, 
COTS, and middleware. Since it is challenging and even not 
feasible to formally model all types of assumptions, we believe 
that building a flexible assumption management framework 
that would facilitate documenting assumptions in both 
machine-checkable and human-readable format is necessary.  

In addition to the assumption-based services provided to 
different software development phases, the assumption 
management framework should also provide services to other 
frameworks that might be benefited from the assumptions, e.g., 
knowledge management, security, safety, etc. The knowledge 
management frameworks use assumptions as the underlying 
motivators for the design decisions or design rationales. For 
example, the assumption management framework can send a 
warning message to a knowledge management framework 
indicating that some of the design decisions or design 
rationales are subject to review, because their underlying 
assumptions are identified as invalid or conflicting.  

F. Prioritization of Assumptions 

A commonly raised argument against documenting 
assumption probably is “assumptions can be anywhere; it is 
not feasible to document and maintain all of them simply 
because they are too many”. This argument is realistic and 
probably true. However, given the history we know that invalid 
assumptions can result in catastrophic consequences. While it 
seems infeasible to document all assumptions given time and 
budgetary constraints, we need to develop methods to prioritize 
assumptions in order to maximize the benefit over the cost.  

Prioritization methods can help to identify/document 
important assumptions. They can also help selecting important 
assumptions among the identified assumptions that would be 
maintained throughout the software life cycle. Assumptions 
can be prioritized according to the domains, project types, 
technology used to build software system, software process, 
criticality, etc.  

G. Assumption-based Verification and Validation  

Assumptions are reported as one of the key problems 
failing the systems. It is expected that managing assumptions 
would reveal many defects earlier. Assumptions that are 
formally documented in the source code can be automatically 



checked both statically and dynamically. However, there is no 
guarantee that a manual checking of assumptions in the 
implementation or automated/manual checking of architectural 
assumptions would prevent all defects related to these checked 
assumptions. From the testers’ point of view, a good place to 
sniff the system for possible defects is where the defects are. 
However, it is not easy to know beforehand where the defects 
actually are. When finding the defects, the earlier in the system 
development life cycle is generally better. Therefore, it is quite 
reasonable to develop test cases motivated by the assumptions 
and then test the system with them. If we can automate these 
tests, they can be applied repeatedly in a cost effective way as 
the system evolves. Moreover, the architectural assumptions 
can be used to develop test cases, scenarios to review the 
architecture. The same concept is applicable for the verification 
of requirements.  

H. Assumption-Based Trust Building and Maintenance  

Software development is human-centric which involves a 
dimension of complexities toward successful management of 
software projects. The increasing popularity of distributed 
software development further boosts these complexities. In a 
globally distributed project people from different geographical 
location, society, culture, organizations and time zones take 
part in developing software.  

Trust has been identified as one of the key success factors 
of distributed software projects [26, 28]. Face-to-face meeting 
and socialization are primary trust building activities that are 
easily achievable for the co-located team members. Time and 
budgetary constraints often do not allow face-to-face meeting 
among the distributed teams [30]. In distributed software 
projects, temporal, geographical and socio-cultural disparities 
obstruct communication, coordination and cooperation among 
the remote team members [34], which in turn contribute to 
developing mistrust among them. Figure 1 shows assumptions 
between people working in a software project. Whenever the 
assumptions do not match the reality, we become unsatisfied 
and conflict arises. Moe and Šmite [28] report the key factors 
that cause lack of trust. 

As a solution to the problems, researchers suggest to take 
necessary action to mitigate the factors contributing to lack of 
trust [13, 7, 15, 26]. Others suggested considering a flexible 
and adaptable software development method that facilitates 
more communication and coordination among the team 
members [39].  

Thus it can be argued that invalid assumptions may be a 
source of mistrust. Therefore, the solution should be directed 
toward where the problem originates. The idea of assumption 
management of human factors can also be applied, in which 
case it can build and maintain trust among the development 
teams. Thus it would be possible to reduce the key factors in a 
cost effective way that act as hindrances toward building and 
maintaining trust in the distributed working environment. 

V. SUMMARY  

Making assumptions is unavoidable when developing 
software systems. This article has provided an overview 
showing that assumptions are used in a number of different 

areas of software and system engineering. It is clear that there 
is a lack of integrated approaches toward systematic 
assumption management, enabling quantitative analysis and 
checks of assumptions, which would ultimately mitigate the 
key challenges associated with the assumptions. Mitigation of 
the challenges would support virtual integration of 
components, continuous deployment and more loosely coupled 
CPSs development. A holistic assumption management 
framework can offer different services to such other 
frameworks such as accessing the assumptions and their 
properties, on-request assumptions validation, on-request 
assumption updates, report errors, warnings, etc.  

Currently, we are working on building a meta-model to 
capture assumptions at different system levels, e.g., 
component, subsystem, and system. Initially, we focus on the 
software and system architecture, with a particular focus on 
formal architecture specifications captured in an architecture 
modeling language such as AADL or OMG MARTE. The goal 
is to capture assumptions explicitly in the architecture model 
and conduct automated and quantitative analysis of the model. 
Thus part of the scope is to generate methods and tools for 
assumption-based verification and validation conducive to 
enabling smooth integration and continuous deployment of 
software systems. 
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Abstract—In this paper we discuss the challenges that
the integration of encryption protocols can impose on the
scheduling of real-time systems in the smart grid. In order
to address these challenges, we present a new task model and
scheduling that takes advantage of the predictable bimodal
nature of the execution of the tasks in the system. This nature
allows us to use stream ciphers to decompose the computation
of the encryption into two parts: a key stream pre-computation
and a fast encryption computation using the key stream bits.
This structure takes advantage of the fact that the trailing
part of our bimodal task is not always executed (e.g., the
actuation). When this happens we execute the keystream pre-
computation to calculate and save values (key bits) to be used
by the trailing part of the task in a future activation. We call
this scheme computation buffering. The values produced during
computation buffering reduce the execution time needed in the
trailing part. Then we show how this scheme reduces both the
utilization of the task (and the taskset) and the response time
of the trailing part of the task. We then present the mapping
of this task model to the multi-frame scheduling model and the
modifications to the response time calculation. Throughout our
discussion we use an example from the smart grid to illustrate
both the challenges and the benefits of our solution.

I. INTRODUCTION

The use of open communication standards (e.g., Internet
protocols over corporate networks) for telemetry and control
in the electric grid demands new security measures to
counteract potential attacks. These measures involve the
use of encryption techniques to protect the confidentiality
and the integrity of information. Unfortunately, the use of
encryption functions in latency-constrained control loops can
enlarge the response time of this loop beyond its deadline.
This is the case of control loops where a large number
of Phasor Measurement Units (PMU) communicates with a
central controller to evaluate the stability of the system and
take corrective actions (e.g., tripping a generator) in case of
instability. This is known as a Wide Area Control System
(WACS) [5].

Figure 1 depicts a simplified version of the sample WACS
presented in [5] that emphasizes the computation that hap-
pens inside the controller. This figure presents a number
of PMUs that send encrypted messages over a WAN (e.g.,
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the corporate WAN). The controller internally decrypts the
messages and evaluates whether the system has reached an
instability threshold. If that is the case, then the controller
calculates the instability details (e.g., origin and potential
cause) and the proper action (e.g., what generator to trip)
to correct it. Then it sends the encrypted actuation (e.g.
tripping) message to the appropriate generator. In order for
the actuation action to be effective, it must be executed
within the appropriate time latency. For instance, [4] men-
tions that a protective relaying action should happen within 4
ms. This means that the system needs to collect the system
state data (e.g. from PMUs) and evaluate a proper action
within this time. Unfortunately, while an increase use of
smart measuring units (PMUs) can increase the quality of the
system state evaluation (whether is stable or not), it can also
increase the computation time necessary to calculate the state
and action of the system. This situation gets worse whenever
we need to add the security mechanisms (encryption) to
prevent attacks. To evaluate whether the computation in
the controller in Figure 1 completes within the appropriate
deadline it is possible to use schedulability algorithms and
response time analysis. In particular, for a set of N periodic
tasks running in a controller processor we can determine
if they can complete before its next period elapses if they
are scheduled under rate-monotonic scheduling [8] and the
following inequality is true:



N∑
i=1

Ci

Ti
≤ UB

where:
• UB is 1 for harmonic tasksets and N(2

1
N − 1) other-

wise,
• Ci is the worst-case computation time of task i, and
• Ti is the period of the task.
The encryption and decryption functions can prevent the

controller from satisfying its deadlines and add unacceptable
latency to the control/protection actions. For instance, if 10
controller tasks (or threads) like the one shown in Figure 1
are run in a computer and each task takes 0.5 ms to run (in
the worst case) with a periodicity of 10ms then we know
that

10∑
1

0.5

10
= 0.5 ≤ 1

This means that the tasks can execute at a periodicity of
10 ms and finish within 10 ms of the start of the execution.
However, if the tasks need to be executed more frequently,
e.g., every 4ms as required by relaying operation according
to [6], then we have that

10∑
1

0.5

4
= 1.25 > 1

Given that the utilization is over 1, it is not possible to
run these tasks at this periodicity. In this case, the encryption
mechanisms contribute to the worst-case execution time and
hence are part of the problem.

In this paper we present a decomposition structure and
scheduling framework to reduce the penalty of computation
that do not depend on the instantaneous state of the system.
This is the case of encryption using stream ciphers [1] that
can pre-compute keystream to be used at a later time. In
addition, we use the multiframe task model to take into
account that the trailing part of the task (e.g. actuation) is
not always executed. We show that using this structure is
possible to reduce the utilization of the taskset and improve
the response time of the critical execution path.

A. Related Work

Research related to this paper can be divided in two
types. On the one hand, we have extensions to the real-time
schedulability model that support multiple execution times.
On the other hand, we use stream ciphers to decompose
encryption functions into two parts that are executed at dif-
ferent times depending on the required reaction time of the
event at hand. Extensions to the traditional rate-monotonic
model [8] to support variations in the execution time have
been extensive. These variations include the multiframe task
model [2] that represent the execution time as a sequence of

numbers instead of a single number. This sequence represent
the different execution times that the task can have that is
both predictable and follows a decreasing order, i.e., starts
with the largest one. This property is called Accumulatively
Monotonic. With this model the authors proved that tasks are
schedulable if their critical instance are schedulable. This
work was later generalized in [3] decoupling the periods
and deadlines of tasks and adding sporadic task arrivals.
This model was later generalized by [4] with the recurring
real-time (RTT) task removing the sequential restriction of
the execution times. More recently [10] extended the model
to support arbitrarily directed graphs that represent different
possible execution parameters of the jobs of a task. In our
work, we use the basic multiframe model as the basis to
restructure the architecture of the software and enable com-
putation buffering. This allows us to go beyond an extension
to the timing model into a new architectural pattern that
improved the overall schedulability of the system.

From the number of research efforts related to stream
ciphers we found two that are close to our work. In [7]
the authors present a new fast encryption scheme for real-
time video called Chaotic Video Encryption Scheme (CVES).
This scheme is a special solution for video encryption that
use chaotic maps to make pseudo-random permutations of
masked video. While this work is similar to ours, this
is specialized for video and does not include a real-time
scheduling framework to verify the schedulability of the sys-
tem. In [9] the authors present the encryption technique used
in MPEG video. The core of the technique is the encryption
of the “I” frames. The effectiveness of the technique is based
on the importance of the “I” frame, i.e., without it the video
cannot be reconstructured. Contrasting to our scheme, this
technique is very specific for MPEG video encryption and
cannot be generalized.

The rest of the paper is organized as follows. Section
II introduces the structure of our system and discusses
one of our key elements: computation buffering. Section
III discusses how we use stream ciphers and computation
buffering to reduce the utilization of the system. Section IV
presents the new schedulability test for our new scheme.
Finally Section V present our conclusions.

II. PREDICTABLE BIMODAL EXECUTION

The system depicted in Figure 1 exhibits a predictable
bimodal execution that is common in monitoring systems.
Specifically, monitoring systems read from some sensors
and evaluate whether an actuation is required or not (i.e.,
the system is inside its normal operational envelope). If the
actuation is not required the execution stops until the next
periodic activation is required. If the actuation is required
then such an actuation is executed to bring the system back
into its operational envelope. As a result, when the task does
not execute the actuation computation we have a shorter
execution time (best-execution mode) than when it executes



the actuation (worst-execution mode). We call these tasks
bimodal tasks.

If bimodal tasks have unpredictable mode switches, then
the tasks need to be prepared to always execute the worst-
execution mode. However, some systems can have some
predictable execution ratio between the modes, i.e., it is
possible to bound the minimum number of best-execution
mode computations that execute for each worst-execution
mode computation. We call this ratio the modal ratio. This
is the case of the example of Figure 1, where the actuation
consist of the tripping of a generator which takes the system
into a degraded mode of operation. This mode keeps the
system well under the emergency threshold until corrective
actions are taken. It is expected that such actions or new
emergencies would take longer than potential emergencies
during normal operation.

A. Computation Buffering

When a bimodal task with predicable modal ratio is given
enough cycles to execute its worst-execution mode in every
period then we can define a bound on the minimum amount
of execution time that is given to tasks but is not used during
its best-execution mode. This time is available to the task
during this mode. We identify this time as the best-execution
mode slack.

The best-execution mode slack can be used to execute
computations from the worst-execution mode ahead of time.
For instance, we could pre-calculate values that do not
depend on sensor values gathered at the instant of the
activation of the worst-execution mode. In such a case,
these values would be saved to be used later. We called
this scheme computation buffering.

Computation buffering reduces the worst-case execution
time reducing the overall utilization of the system. As a
result, it also reduces the difference between the worst-
execution and the best-execution modes and, hence, the best-
execution mode slack.

When we generate more pre-computed values than re-
quired by the worst-execution mode, then we can execute
the worst-execution mode and the computation buffering in
a mutually-exclusive fashion. In other words, if the worst-
execution mode is executed then the computation buffering
is not and viceversa. This reduces (or avoids) wasted re-
served computation time.

III. DECOMPOSING CRYPTOGRAPHIC COMPUTATION

The WACS system of Figure 1 is a system of bimodal
tasks that can exhibit a predicable modal ratio. If we
combine this system with stream ciphers [1] we can use
computation buffering to decompose the encryption func-
tions. In particular, stream ciphers create a keystream of the
same size of the message to be encrypted (decrypted) that
is later used with a simple operation (e.g. xor) to encrypt
(decrypt) the message in a rapid fashion.

 

PMU 

PMU 

PMU 

PMU 

PMU 

 

Receive 

Generator Trip 

Fast 
decrypt 

Instability 
threshold 

Calculate 
Instability 

Calculate 
actuation 

Fast 
Encrypt 

Transmit 

Generate 
keystream 1 

Generate 
keystream 2 

Keystream 1 Keystream 1 

Critical path 

Non-Critical path 

Controller 

Figure 2. WACS Decomposition

The restructured system is depicted in Figure 2. We iden-
tify the two mutually-exclusive modes as two different paths:
the critical path that contains the actuation functions, and
the non-critical path that contains the optional computation
buffering.

The new structure allows the critical path to perform a
fast actuation in case a problem is detected based on the
inputs from PDUs, whereas the non-critical path does not
include any actuation. Such decomposition enables us to (1)
reduce the total computation time of original task and (2)
minimize the response time of the critical path.

The critical path of Figure 2 includes all steps from
Figure 1 with encryption and decryption replaced by the
fast versions. The non-critical path does not include the
computation of the actuation, which frees up execution time
that is used to generate the key streams. In this new structure
the task is transformed into a bimodal task with execution
times Cn

i for the non-critical path and Cc
i for the critical

path, where both new execution times can be less than the
original Ci. Furthermore, we assume that we execute Cc

i

at most once per Ii executions of Cn
i . This assumtion is

reasonable because (1) actuation is necessary only if the
PMU measurements indicate a problem, which should be
rare and (2) after an actuation the network must be given
time to stabilize before the next actuation happens. The
utilization of task i now observes the following relationship

Ui =
Ii − 1

Ii

Cn
i

Ti
− 1

Ii

Cc
i

Ti
=

(Ii − 1)Cn
i + Cc

i

IiTi
<
Ci

Ti

That is, the utilization of the new bimodal task is smaller
than the original one.

If we use this decomposition in our previous example it
may be possible to schedule the tasks. For instance if the
new execution times are:

Cn
i = 0.3

Cc
i = 0.35
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Ii = 4

U =

10∑
1

(4− 1) ∗ 0.3 + 0.35

4 ∗ 4
= 0.78125 ≤ 1

However, in order to verify the schedulability test we need
to perform a critical instant test that we will developed in
Section IV. In addition, we must ensure that the keystream
generation is frequent enough to produce a sufficient number
of key bits such that the functions Fast decrypt and
Fast encrypt can work properly. Specifically, we need
to verify that Ii−1 executions of the key generators produce
enough key bits to decrypt at least Ii incoming PMU
messages and encrypt at least one actuation message. This
can be verified with the following equations

Gd
i (Ii − 1)− IiSd

i ≥ 0

Ge
i (Ii − 1)− Se

i ≥ 0 (1)

where:
• Gd

i is the number of bits produced by Generate
keystream 1 for the Fast decrypt function

• Sd
i is the number of bits consumed by the Fast

decrypt function
• Ge

i is the number of bits produced by Generate
keystream 2 for the Fast encrypt function

• Se
i is the number of bits consumed by the Fast

encrypt function
For decryption, each round of key bit generation must

produce more key bits than the length of the incoming PMU
data. The ratio of generated-to-consumed bits Gd

i

Sd
i

depends on
the number of executions of the Generate keystream
1 (non-critical path) per actuation (critical path) as shown
in Figure 3. It is worth noting that with an increasing modal
ratio I the neecessary key stream overproduction converges
toward 1 quickly.

In case of a WACS, actuations are rare compared to the
number of PMU messages such that only a small number
of extra key bits must be generated in each non-critial path

execution. Generating the encryption key stream is even less
critical because only Se

i

Ii−1 key bits must be generated.
We can now formally express a condition under which

both new execution times are less that Ci. For this we
assume that (a) the original encryption and decryption func-
tions take the same amount of time and (b) we generate
the minimum number of key bits, i.e., we use equality in
relations (1). By simply adding the execution times of blocks
of functionality in the two paths, we arrive at

Cn
i =Ci − Cact

i + KGEN(Gd
i − Sd

i ) + KGEN(Ge
i − Se

i )

=Ci − Cact
i + KGEN

(
1

Ii − 1
Sd
i −

Ii − 2

Ii − 1
Se
i

)
and

Cc
i = Ci − KGEN(Sd

i + Se
i ) ≤ Ci

where Cact
i is the time needed to calculate a nec-

essary actuation and KGEN(n) is the execution time
to generate n bits of a key stream. Cact

i includes
the functions Calculate Instability, Calculate
Actuation, Fast Encrypt, and Transmit from Fig-
ure 2.

It follows that Cn
i ≤ Ci if

Cact
i > KGEN

(
1

Ii − 1
Sd
i −

Ii − 2

Ii − 1
Se
i

)
This condition puts an upper bound on the time to gener-

ate additional key bits needed for decryption (and therefore
the length of incoming PMU messages) when the critical
execution path is taken.

IV. NEW RESPONSE-TIME TEST

In order to evaluate the schedulability of a taskset we
use the response-time test using the multiframe task model
presented in [2]. With this model if we ensure that we
structure each task as a multiframe task with the following
structure

τi =

{
(〈Cn

i,1, . . . , C
n
i,Ii−1, C

c
i 〉, Ti) if Cn

i > Cc
i

(〈Cc
i , C

n
i,1, . . . , C

n
i,Ii−1〉, Ti) otherwise

where we have Ii − 1 periodic executions of the non-
critical path followed by an execution of the critical path
if the non-critical path execution is larger than the critical
execution, or one critical execution followed by Ii − 1
non-critical executions otherwise. We can now evaluate its
schedulability with the traditional rate-monotonic response-
time tests. In particular, in the critical instance of this task
set all tasks request execution at the same time, and the
task set is schedulable when it is schedulable in the critical
instance [2].

We use these results to evaluate the response time of
task τi. We can use the following recurrence equations and
execute them until they converge (Rr+1 = Rr) to calculate



the precise response time of the task (Ri,c for the critical
path and Ri,n for the non-critical path).

R0
i,n = Cn

i

Rr+1
i,n = Cn

i +
∑

j∈hp(i)

(⌈
Rr

i

Tj

⌉
Cn

j + CPi(j)

)
R0

i,c = Cc
i

Rr+1
i,c = Cc

i +
∑

j∈hp(i)

(⌈
Rr

i

Tj

⌉
Cn

j + CPi(j)

)
where CPi(j) is the preemption from the critical path

defined as:

CPi(j) =


⌈

Rr
i

TjIj

⌉
(Cc

j − Cn
j ) if Cc

j > Cn
j

−
⌊

Rr
i

TjIj

⌋
(Cn

j − Cc
j ) otherwise

and hp(i) is the set of all the indices of the tasks with
shorter or the same period excluding task i (in our example
j 6= i). This set represents the tasks with higher priority than
i when rate-monotonic priorities are used. Once the response
time is calculated we only need to verify that it is smaller
than its period.

Rr
i,c ≤ Ti

Rr
i,n ≤ Ti

For our example the response time test for the critical path
of our tasks would be as follows:

R0
1,c = 0.35

R1
1,c = 0.35 +

9∑
1

⌈
0.35

4 ∗ 4

⌉
0.05 +

9∑
1

⌈
0.35

4

⌉
0.3 = 3.5

R2
1,c = 0.35 +

9∑
1

⌈
3.5

4 ∗ 4

⌉
0.05 +

9∑
1

⌈
3.5

4

⌉
0.3 = 3.5

This means that the critical path of the task will finish in
less than 4ms. For the non-critical path we get

R0
1,n = 0.3

R1
1,n = 0.3 +

9∑
1

⌈
0.3

4 ∗ 4

⌉
0.05 +

9∑
1

⌈
0.3

4

⌉
0.3 = 3.45

R2
1,n = 0.3 +

9∑
1

⌈
3.45

4 ∗ 4

⌉
0.05 +

9∑
1

⌈
3.45

4

⌉
0.3 = 3.45

such that the non-critical path also finishes in less than
4ms and the system is schedulable.

V. CONCLUDING REMARKS

In this paper we presented a new task model and schedul-
ing for bimodal tasks with computation buffering and pre-
dictable modal ratio. This model takes advantage of the fact
that the trailing part of a task is not always executed (e.g.
the actuation). When this happens our tasks pre-calculate and
save values to be used by the trailing part of the task in a
future activation. These values, in turn, reduce the execution
time of the trailing part. We showed how this novel structure
allows us to both reduce the utilization of the task (and the
taskset) and reduce the response time of the trailing part of
the task. We also presented the mapping of this task to the
multi-frame scheduling model and the modifications to the
response time calculation. Finally, we used an example from
the smart grid throughout the paper to illustrate the benefits
or our approach.
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