» Compositional Safety and Security
Analysis of Architecture Models

Mike Whalen

Program Director
University of Minnesota Software Engineering Center

UNIVERSITY OF MINNESOTA

Software Engineering Center

Acknowledgements

* Rockwell Collins (Darren Cofer, Andrew
Gacek, Steven Miller, Lucas Wagner)

e UPenn: (Insup Lee, Oleg Sokolsky)
e UMN (Mats P. E. Heimdahl)
e CMU SEI (Peter Feiler)

Main Messages

We need a variety of reasoning approaches and
bartitioning methods for system-level
requirements and analysis

Your How is My What: requirements vs.
design is a often matter of perspective

Requirements hierarchies often follow system
and software architectures.

Component Level Formal Analysis Efforts

Rock ‘_.""‘o/?,!hs Examples of Using Formal Methods

- . Rockweff E I f Using F | Method
AAMP7G Certified Microprocessor fﬂﬂﬂs xampes of sing rorma; metnocs

Rockwe,

/iy/ Ay Examples of Using Formal Methods

Turnstilé€

+ High-assurance cross domain
comm_unicatio_n between diffe

Rotkl(»‘_lgiy

+« HW/SW codesian
— Target: 40 GB throud

— Core is controller thgd
manages rest of sys
— Specialized high spe
encryptor (top) and
L (bottom) implement]
specialized HW

Formal Analysis

in an Industrial Context

Michael Dierkes

¢« Formal analysis of
Rockwell Collins France

controller using
Simulink/Stateflo

d Prover model chec FMICS 2011 workshop
Challenges: August 30, 2011
Trento

= Complex data structure invg
due to efficiency concerns
= Too much data for stateful
verification, overwhelms tog

Copyright Rockwell Collins 2011
All rights reserved

of a Triplex Sensor Voter

Rockwe//_ ase I Results
Collins s

Integrity-178B Real-Time 0S Evaluation

.f"_.

I1

\ Directorate

e I

psystem/ Charts / Reachable Properties
Blocks Transitions/ State Space

TT Cells
0/96 3/35/198 6.0%10° 48
7142 01010 2.4 =1¢* 6
b3 2126/0 1.32*10"]
BI169 5/61/198 NA 62

h of ten control surfaces

Errors
(% total) Found

» Manual translation of prope
into inductive invariants B = _ :%

=
™,
& Copyright 2008 Rockwell Collins, Inc. = e E== @"“
opyrig ? chwell Callins, Inc

All rightsreserved.

@ Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Testing | 60% 0
Model-Checking | 40% 12

27

Mismatched Assumptions

System Engineer ppysical plant Control Engineer
Characteristics Measurement Units
:5 Lag, proximity Ariane 4/5
7] Air Canada
> >
E Q System Control 5
2 Under =
"t;; Control Data Stream SyStem 0
U>)’ ontro Characteristics g.
ETE Latency (F16) o
Operator Error State delta (NASA) =]
Lag, proximity O
- - o
Co @ Runtime @ Agp::lcatlon <
Platform Architecture oftware o
Hardware kS
Engineer Embedded SW Concurrency
System Engineer Communication

ITunes crashes on dual-cores
Distribution & Redundancy

Virtualization of HW
(ARPA-Net split)

Slide from: An Overview of AADL v2 by Peter Feiler; 2010 © 2010 Carnegie Mellon University 6

Vision

System design & verification through pattern

application and compositional reasoning

] i LRU
| SENSOR | T)
| i COMPUTING | FAIL-SILENT
VOTE ! !1 | RESOURCEA ! NODEFROM
MULTIPLE : SENSOR 2 ¥ — REPLICAS
DATA 1 | : :
| L COMPUTING !
! SENSOR 3 n RESOURCE B |
1 1! 1
1 I A 7’
\ 1
\ . | \
VERIFIED ! ! VERIFIED
AVAILABILITY ARCHITECTURE INTEGRITY

MODEL

COMPOSITIONAL PROOF OF CORRECTNESS
(ASSUME — GUARANTEE)

SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES

COMPOSITION

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

NOILOVYL1SaV

IsNn3y
NOILVOIdIY3A

Complexity-reducing design patterns

* Capture best solutions to architectural design

Approach

* Reuse of formally verified solutions
* Increase level of design abstraction 2

COMPOSITIONAL
REASONING &
ANALYSIS

e’

1 I
1 Pl
1 [
I P! N
| T ZNsTAN.. L SESE \
' ARCH . PATTERNS P '
: PATTERN : : & CHECK : : :
! MODELS Do CONSTRAINTS | ; 1 !
1
: ’ | | |
1 1 : 1 : :
: V Do Do !
: | B .
1
1 1! SYSTEM [!
1 | ANNOTATE PATTERN & | 1 4 |SYSTEMMODELING| ~| MODEL P S| auto [| SYSTEM !
1| &VERIFY - IMPLEMENTATION
| COMP SPEC | ENVIRONMENT - (AADL) i1 ¥ | GENERATE - !
[FIQIRIELS LIBRARY ! [|
! |
: 1
| 1
| 1
| 1
\ 1
1
1
1
1
1
1
1

System architecture modeling

» Apply formal specification and analysis tools to
system-level design
Separate component specification and
implementation
Automated model translation

Compositional verification 3

* Reason about system behavior based on
contracts and system design model structure

» Compositional approach scales to large
software systems

@ Copyright 2011 Rockwell Collins, Inc. February,2012 IFIP 2012: Mike Whalen
rights reserved.

Complexity-Reducing
Architectural Design Patterns

Desion Patterns

nits of Reusable

e Design pattern = model transformation

° p:wm—> x (partial function)
> Applied to system models

» Reuse of verification is key
> Not software reuse

o QGuaranteed behaviors associated with
patterns (and components)

* Reduce/manage system complexity
> Separation of concerns
> System logic vs. application logic (e.g., fault tolerance)
> Process complexity vs. design complexity

e Encapsulate & standardize good solutions
> Raise level of abstraction
> Codify best practices

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Avionics
System

Flight
Control

Flight
Guidance

System Design Through Pattern Application

Active Standby Pattern

Initial /Replicate Leader Selection PALS Replicate SFi':aI
System 7T "ML T T T TaL N N Y

=]

i
[

1

System Hierarchy —>

Pattern Application >

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

System verification

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

N

~| INSTANTIATE

ARCHITECTURAL
PATTERNS

ARCH
PATTERN
MODELS

7

\

ANNOTATE
& VERIFY
MODELS

SYSTEM SYSTEM
MODELING MODFI T T
ENVI

PATTERN &
COMP SPEC

I TDPADV

SYSTEM
AUTO
GENERATE [—=>[[MPLEMENTATION

Vv

Reusable Verification:

Proof of component and pattern
requirements (guarantees) and
specification of context
(assumptions)

Instantiation: Compositional Verification:

Check structural constraints,
Embed assumptions &
guarantees in system model

System properties are verified
by model checking using
component & pattern
contracts

@ Copyright 2011 Rockwell Collins, Inc. February,2012 IFIP 2012: Mike Whalen I
rights reserved.

Hierarchical reasoning about
systems

e Avionics system requirement Avionics
System

Under single-fault assumption,

GC output transient response is
bounded in time and magnitude

ADS L g ADS R FCS
* Relies upon

> Accuracy of air data sensors

o Control commands from FCS
Mode of FGS FGS_L | FGS_R] Autopilot
FGS control law behavior

Failover behavior between FGS
systems

System | Control
> Response of Actuators Modes Laws

Co-ord

o Timing/Lag/Latency of
Communications

February,2012 IFIP 2012: Mike Whalen

Compositional Reasoning for Active

Standby

Want to prove a transient
response property

> The autopilot will not cause a sharp
change in pitch of aircraft.

o Even when one FGS fails and the
other assumes control

Given assumptions about the
environment

> The sensed aircraft pitch from the
air data system is within some
absolute bound and doesn’t change
too quickly

> The discrepancy in sensed pitch
between left and right side sensors is
bounded.

and guarantees provided by
components

> When a FGS is active, it will generate
an acceptable pitch rate

As well as facts provided by
pattern application

o Leader selection: at least one FGS
will always be active (modulo one
“failover” step)

ibd [SysML Internal Block] Flight_Control_System_Imp! [Flight_Control_System]

Flight_Contrzcsasystem_Impl

Flight_Control_Syster|

THROTL2FCI \,J-\

YOKEL2FCI

THROT_L

YOKE_L

FCI : Flight_Crew_Interface

— 0}

5] Fo_R

@ FM_R
toFGSR

<] NAV_R

THROTR2FCI

YOKER2FCI

THROT_L YOKE_L

YOKE_R THROT_R

transient_ response_1

transient_response_ 2

assert true ->

abs (CSA.CSA_Pitch Delta) < CSA_MAX PITCH DELTA ;

assert true ->

abs (CSA.CSA_Pitch Delta - prev(CSA.CSA Pitch Delta, 0.0))

< CSA_MAX PITCH DELTA STEP ;

Hierarchical reasoning between
analysis domains.

* Avionics system requirement

Flight Control

System

o . \\
leader transition
managed on
failure

Under single-fault assumption,

GC output transient response is
bounded in time and magnitude

Leader
Selection

* Relies upon

. synchronous one node ‘lﬁ

° Guarantees prowded b)’ . communication operational E
patterns and components R >

o Structural properties of PALS B Replication g
model T) 2

. Structure O

. ASSUMPTIONS

i timing not
constraints co-located

> Resource allocation feasibility

> Probabilistic system-level
failure characteristics

Platform

~
\

Principled mechanism for Probabilictic

1
' Resource

“passing the buck” |

RT sched ii Error
&latency |1 model

?”C_opyright 2011 Rockwell Collins, Inc. October 2012 AADL Meeting Mike Whalen 14
rights reserved.

Contracts

* Derived from Property
Specification Language
(PSL) formalism
o |EEE standard

o |n wide use for hardware
verification

* Assume / Guarantee style
specification
> Assumptions:“Under
these conditions”

> Promises (Guarantees):
“...the system will do X”

e Local definitions can be
created to simplify
properties

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Contract:

fun abs(x: real) : real = if (x > 0) then x else -x ;
const ADS MAX PITCH DELTA: real = 3.0 ;

const FCS MAX PITCH SIDE DELTA: real = 2.0 ;

const CSA MAX PITCH DELTA: real = 5.0 ;

const CSA MAX PITCH DELTA STEP: real = 5.0 ;

property AD L Pitch Step Delta Valid =
true ->
abs (AD L.pitch.val - prev(AD L.pitch.val, 0.0)) < ADS MAX PITCH DELTA ;

property AD R Pitch Step Delta Valid =
true ->
abs (AD R.pitch.val - prev(AD R.pitch.val, 0.0)) < ADS MAX PITCH DELTA ;

property Pitch 1lr ok =
abs (AD L.pitch.val - AD R.pitch.val) < FCS _MAX PITCH SIDE DELTA ;

property some fgs active =
(FD_L.mds.active or FD R.mds.active) ;

active assumption: assume some fgs active ;

transient assumption :
assume AD L Pitch Step Delta Valid and
AD R Pitch Step Delta Valid and Pitch 1r ok ;

transient response 1 :
assert true -> abs(CSA.CSA Pitch Delta) < CSA MAX PITCH DELTA ;
transient response 2 :
assert true ->
abs (CSA.CSA Pitch Delta - prev(CSA.CSA Pitch Delta, 0.0)) <
CSA MAX PITCH DELTA STEP ;

Reasoning about contracts

* Notionally: It is always the case that if the
component assumption is true, then the component
will ensure that the guarantee is true.

= P);

e An assumption violation in the past may prevent
component from satisfying current guarantee, so
we need to assert that the assumptions are true
up to the current step:

> G(H(A) = P);

Systems of Contracts

e Architectures are hierarchically composed

in layers.

° Visually: a box and
line diagram

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System] CsA

Flight_Control_Systern|

FGSLtoFDL FGSLtoAP
Fo_L [F< e FGSRIoAP FGSRIOFDR 5] for
o) I O m a I Iy yo u C a n 5.1 - it Guanes Sysem R
ADLIoFGSL B . . ADRIOFGSR
=l =
Aot s FGSLIOFGSR ADR
so[
AHRtoFGSR
AHLtoFGSL
4 AHL AH[] AH_R
wiav[] EMEIFGSR FuR
FM_L {] vnav Lsif FGSRIOFGSL |
NAVRtoFGSR €] NAV_R
NAVLtoFGSL -

FCItoFGSL FCItoFGSR

ol

system S:

il
—
A FCI : Flight_Crew_Interface THROTR2FCI
’ ’ THROTL2FCI

YOKEL2FCI YOKER2FCI

C is a finite set of
component contracts

C:P (AxP)

Reasoning about Contracts

* Given the set of component contracts:
r={GHA,) =>P)|ceC}

* Architecture adds a set of obligations that
tie the system assumption to the
component assumptions

Q ={H(A,) = P} U
{H(Ay) = A. | ceC}

e This process can be repeated for any
number of abstraction levels

Composition Formulation

* Suppose we have

o Sets of formulas I' and Q)
o A well-founded order < on ()
o Sets O, C A, C Q, such that r € ©, tmplies r < q

e Thenifforallqe Q
* = G((Z(H(©y)) * &) = q)
e Then:
G(q) forallqe Q
* [Adapted from McMillan]

A concrete example

ibd [SysML Internal Block] Flight_Control_System_Imp! [Flight_Control_System]

e Order of data flow through

. Flight_Cont:i 3y st Impl
system components is R I R
computed by reasoning engine

Flight_Control_Syster

o {System inputs} >
{FG S_L’ FG S_R} Fo_L [Cl< FGSLtoFDL l FGSLtoAP — . o o

o {FGS_L,FGS_R} > {AP}
o {AP} = {System outputs}

ADLtoFGSL

ADRtoFGSR

FGSLtoFGSR

FGSRtoFGSL

e Based on flow, we establish
four proof obligations

° S)’Stem assumptions 9 FCltoFGSL FCItoFGSR
FGS_L assumptions “rh

FCI : Flight_Crew_Interface THROTR2FCI
THROT_R[¢

THROTL2FCI

> System assumptions =
. YOKEL2FCI YOKE L YOKE_R YOKER2FCI
FGS_R assumptions :

> System assumptions +
FGS_L guarantees +
FGS_R guarantees =

AP assumptions

&

))
THROT_L YOKE_L YOKE_R THROT_R

o System assumptions + {FGS_L, FGS_R,AP} guarantees = System guarantees

e System can also handle circular flows, but user has to choose where to break cycle

Architecture of Generic Infusion
Pump

GPCA Pump

Pump Hardware Pump Controller

Flow Rate Pump Software
Door -
Detector Position
- “
Battery
Supply Detector
Pump

Pressure

* GPCA = Generic Patient-Controlled Analgesia [T,

Command

* Product Family architecture

GPCA Pump Example

* Property of Interest:

° |If a*“Pump Stop” command is received, then
within | second, measured flow rate shall be
zero.

* We will prove this property
compositionally based on the architecture
of the Pump subsystem.

Proof of GPCA Pump

GPCA Pump

Pump Hardware

Flow Rate Pump
Detector Position

Pump
Motor

Pump Controller
Software

Assertion:When a “Pump Stop” infusion command is
received, then within | second, measured flow rate
shall be zero.

Infusion
Command

Proof of Reciprocating Pump

GPCA Pump

Reciprocating Pump Hardware Pump Controller
Software

Detector
When pump stop
command occurs,
pump motor will be
switched off when
pump motor position

reaches no-ambient
flow state.

Assertion:When
powered on, pump
cycles between ambient

Pump and no-ambient flow
Motor states every 300 ms.

Assertion:When a “Pump Stop” infusion command is received, then
within | second, measured flow rate shall be zero.

Proof of Rotary Pump

GPCA Pump

Rotary Pump Hardware Pump Controller

Software

Detector
When pump stop
command occurs,
pump motor will be

immediately switched
off.

Pump
Motor

Assertion:When a “Pump Stop” infusion command is received, then
within | second, measured flow rate shall be zero.

- ARCHITECTURE AND
REQUIREMENTS

Requirements or Design Information?

The patient shall never be infused with a single air
bubble more than 5ml volume.

When a single air bubble more than 5ml volume is
detected, the system shall stop infusion within 0.01
seconds.

When a single air bubble more than 5ml volume is
detected, the system shall issue an air-embolism
command.

When air-embolism command is true, the system
shall stop infusion.

When air-embolism command is received, the
system shall stop piston movement within 0.1
second.

A: Both

|. The patient shall never be infused

with a single air bubble more than 3. When a single air bubble more than
5ml volume. 5ml volume is detected, the system
\ shall issue an air-embolism command.

VATIENT THERAPY SYSTEM

\\

KNFUSION SYSTEM
DRUG AIR BUBBLE
DELIVERY SENSOR
HARDWARE
4. When air-embolism
PUMP SYSTEM w ~_ command is true, the
PUMP PUMP system shall stop infusion.
HARDWARE CONTROLLER
\\\)
/ 5. When air-embolism command is
When a single air bubble more received, the system shall stop
than 5ml volume is detected, the piston movement within 0.] seconds

system shall stop infusion within
0.01 seconds.

REATELLLEEE

phE AAAREEREEELI I AR Rk B N RN N R

9/25/2012 Mike Whalen - TwinPeaks 2012

29

Your How is My What

e Systems are hierarchically organized

* Requirements vs. architectural design must be a
matter of perspective

* Need better support for N-level
decompositions for requirements and
architectural design

> Reference model support

How do elements “flow” between world, machine, and
specification as we decompose systems?

o Certification standard support (DO-178B/C)

Currently: two levels of decomposition: “high” and “low”

Twin Peaks

General

Level of
Detail

Requirements

¥
Detailed

Independent

Architecture

Dependent

»

Implementation Dependence

9/25/2012 Mike Whalen - TwinPeaks 2012

31

Often, Architecture Comes First

e Candidate architectures from previous
systems

> Designer familiarity
> Cost amortization

e Program families
 Certification or criticality requirements

Architectural choices often restrict set
of achievable system requirements.

Flow is Bi-directional

Flow up: Environmental
constraints and modified
system requirements from C2

System A
System C2

System Z

C1 C2 Z

Flow down: * Determine subcomponents

Requirements for C2 * Allocate requirements to

subcomponents

* Verify that subcomponent
requirements establish system
requirements

Requirements Validation and
Verification

e Given hierarchical systems, where are the most
serious problems with requirements?
> At the component level?
> At the top-level?

> Somewhere in the middle?
* A hypothesis:

> The most problematic are the layers in the middle

° Errors in decomposing system requirements become
integration problems.

* These are requirements to be both verified and
validated.

" STRUCTURAL
PROPERTIES

Structural Properties

» Often, we are interested in properties
about a model structure

> Given the processor resources, is the system
schedulable?

° |s my software correctly distributed across
different physical resources!?

> Are my end-to-end timing assumptions met?

» Often these involve checking the mapping
between the software and the hardware.

Structural Properties

Software + HW platform

> Process, thread, processors, bus

Ex: PALS vertical contract

> PALS timing constraints on platform

o Check AADL structural properties
Guarantees

> Sync logic executes at PALS Period

° Synchronous Communication
=> “One Step Delay”

Assumptions (about platform)

> Causality constraint:
Min(Output time) 2 2€ — pmin

> PALS period constraint:

Max(Output time) £T - ymax - 2€

csa

m
Fligm_coﬁ‘frcl_system
sedcen

Software

IMA_Platform

| ma_bus : IMA_BUS

Platform

PALS assumptions in AADL

! Clock Jitter
(+ Sy/// _

Period

T
(|xe)

Deadline

v

A 4

Compute Execution Time

tg)

Thread execution |

[

[Earliest output message

™~ Min(Output Time)

>/ Min (Latency)

S— Latest period start

on other node

Causality Constraint

\\ Output Time

I+

» Output
message

Latency

Dispatch Offset (if imposed)
Dispatch Jitter (if describing max scheduling delay)

Period

Input
message
available

Earliest period start
on other node

(

Deadline

. —— N

»
»

| Thread execution

Latest output

__— Latest period start

A 4

message

Max(Latency) >

Max(Output Time)

PALS Period Constraint

Structural property checks

e Contract

o Platform model satisfies
PALS assumptions

» Attached at pattern
instantiation
> Model-independent
> Assumptions

° Pre/post-conditions

e Lute theorems
> Based on REAL
> Eclipse plug-in

o Structural properties in
AADL model

PALS Threads := {s in Thread Set | Property Exists(s,
"PALS Properties::PALS Id")};

PALS Period(t) := Property(t, "PALS Properties::PALS Period");
PALS Id(t) := Property(t, "PALS Properties::PALS Id");
PALS Group(t) := {s in PALS Threads | PALS Id(t) = PALS Id(s)};

Max Thread Jitter(Threads) :=
Max ({Property(p, "Clock Jitter") for p in Processor Set |
Cardinal ({t in Threads | Is Bound To(t, p)}) > 0});

Connections Among (Set) :=
{c in Connection Set | Member (Owner (Source(c)), Set) and
Member (Owner (Destination(c)), Set)};

theorem PALS Period is Period
foreach s in PALS Threads do
check Property Exists(s, "Period") and
PALS Period(s) = Property(s, "Period");
end;

theorem PALS Causality
foreach s in PALS Threads do

PALS Group := PALS Group(s);
Clock Jitter := Max Thread Jitter (PALS Group);
Min Latency := Min({Lower (Property(c, "Latency")) for
c in Connections Among (PALS Group)});
Output Delay := {Property(t, "Output Delay") for t in PALS Group};

check (if 2 * Clock Jitter > Min Latency then
Min (Output_Delay) > 2 * Clock Jitter - Min Latency
else
true) ;
end;

Tool Chain

a

e B Bt

T

ot S Sakge

1o/

o o o o o o o .

SysML-AADL translation

OSATE:
AADL modeling

EDICT:
Architectural
patterns

|-

AADL

Lute:
Structural

(TR PRI TN s YT verification
% ottt | Tk | St i1 _anrcn |

AGREE:
Compositional behavior
verification

Lustre

o s i

i
T , rer
nam s
4 :
D St P A Nyt g | B i ks, O T G Proee)
Le
s on
3 EDICT Desion- PETA demo- SysComa/t JarbtctureFortem HETA demo.archovsis -EBICT-Goe =il
P Edt Mol Seach ot 3 o
B Q- . xB el A
=10 AL
s T
Design Effort: META demo
Design Option: META demo.
System Composition
S8 core
g
4% pattems
. — T T — &l
.| 6= outne| & won... Svatem rchitecture Overview,
e NETacen
Desronars
= g s | r =
System Architecture
< |
===
VadetVerticationfor: system Archiectire ‘METAdema” verficar

29 11:40:52 L

. fbk .eu>

to the CUDD library
gents of the Universit

ee http:/

puright (

IN My

ta_L_ok
ret))

ret)

SUCCESS

Februa_;:y,-ZOI:Z IFIP 2012: Mike Whalen

Structural and Behavioral Properties

Structural (Non-functional) Properties:
Analyze conformance, optimization
properties for hardware resources and
model structure.

Assertion: My system is schedulable
using Rate Monotonic Scheduling.

Theorem RMA
foreach e in Processor_Set do

Proc_Set(e) := { x in Process_Set |
Is Bound To(x, e)};
Threads :={x in Thread_Set |
Is_Subcomponent Of(x, Proc_Set) }

check (sum
(get_property value (Threads
“‘RTOS_properties::Utilization”)) <=
(Cardinal (Threads) *
(2 ** (1 / Cardinal (Threads)))-1)) ;

End RMA;

Checkable with Lute

Behavioral (functional) Properties:
Analyze system behavior. Behavioral
properties may use structural properties.

Assertion: If a “Pump Stop” command is
received, then within 1 second the
measured flow rate shall be zero.

PSL_contract

property no_flow after stop:

after

(not (infusion_control_in.Pump_0On))
(exists

flow_rate_detector out.Rate =0
within

STEPS_PER_SECOND *1) ;

assert (no_flow_after_stop) ;
end PSL_contract;

Checkable with AGREE

Are these the “right” logics!?

e Simpler logics have benefits
> Primary benefit: much simpler to analyze

o AADL error annex is (mostly) propositional
Makes analysis simpler

Supports useful categorization of errors
o Datalog-style logics support “timeless” analysis
The Lute checker is essentially a datalog interpreter
* More complicated logics are necessary for certain
properties
o Richer types (e.g., algebraic types for XML messages)

o Quantification

Dealing with Time

* Pure synchrony or asynchrony

e Uniform discrete time

> Choose fixed time quantum between steps

° This quantum need not be the same between
layers

> Adjust process behavior and requirements with
clocks.

SIMPLEST —mm>

<€<—— MOST ACCURATE

e Non-uniform discrete time

o Calendar/Timeout automata advance system to
next interesting instant

e Dense time

Scaling

* What do you do when
systems and subcomponents
have hundreds of
requirements!?

> FGS mode logic: 280
requirements

> DWM: >600 requirements

Need to create automated
slicing techniques for
predicates rather than code.

> Perhaps this will be in the form of

counterexample-guided
refinement

o

BB 5 o= E |

CETEH B

Sk Proof

SPEC AG([IMode_Annunciations_On & 1Onsgide_FD_On) -=
AX((ls_This_Side_Active =1 & Onside_FD_On) -=

Mode Annunciations_On))

SPEC AG((IMode_Annunciations_On & Offside_FD_On = FALSE) -
AXllls_This_Side_Active = 1 & Offside_FD_On = TRUE] -=
Mode_Annunciations_On))

SPEC AG((IMode_Annunciations_On & 1Onside_FD_On) -=
AXifls_This_Side_Active =1 & Onside_FD_On) -»
Made_Annunciations_On))

SPEC AGIMode_Annunciations_On -»= AX([1s_This_Side_Active =1 &
IOnside FD_On & Offside FD_On = FALSE & lls_AP_Engaged) -=
IMode_Annunciations_On))

SPEC AGiMode_Annunciations_On -= AX((1s_This_Side_Active =1 &
(Onside_FD_0On | Offside_FD_On = TRUE | Is_AP_Engaged)) -=
Made_Annunciations_On))

SPEC (IMode_Annunciations_On)
SPEC AGils_This_Side_Active = 1 -= (Mode_Annunciations_On <->
(Onside_FD_On | Offside_FD_ On =TRUE | Is_AP_Engaged)))

Assigning blame

Counterexamples are often
hard to understand for big
models

It is much worse (in my
experience) for property-
based models

Given a counterexample,
can you automatically assign
blame to one or more
subcomponents!

Given a “blamed” component,
can you automatically open
the black box to strengthen
the component guarantee!

Signal Step...

0 1 2 3 4 5
AD_L.pitch.val -091 -183 -2.74 -3.65 -435 -4.39
AD_L.pitch.valid FALSE TRUE FALSE TRUE TRUE FALSE
AD_R.pitch.val 083 -0.09 -1.00 -191 -2.83 -3.74
AD_R.pitch.valid TRUE FALSE TRUE FALSE FALSE TRUE
AP.CSA.csa_pitch_delta 0.00 0.13 0.09 0.26 0.74 -4.26
AP.GC_L.cmds.pitch_delta 0.00 -491 -4.65 -457 -474 -4.35
AP.GC_L.mds.active TRUE FALSE FALSE FALSE FALSE TRUE
AP.GC_R.cmds.pitch_delta 0.00 0.83 -4.43 -448 4091 4.83
AP.GC_R.mds.active TRUE TRUE FALSE FALSE FALSE FALSE
Assumptions for AP TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FCI TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_L TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_R TRUE TRUE TRUE TRUE TRUE TRUE
FGS_L.GC.cmds.pitch_delta -491 -4.65 -457 -474 -435 0.09
FGS_L.GC.mds.active FALSE FALSE FALSE FALSE TRUE FALSE
FGS_L.LSO.leader 2 2 3 2 1 3
FGS_L.LSO.valid FALSE TRUE FALSE TRUE TRUE FALSE
FGS_R.GC.cmds.pitch_delta 083 -443 -448 491 483 391
FGS_R.GC.mds.active TRUE FALSE FALSE FALSE FALSE FALSE
FGS_R.LSO.leader 0 0 1 0 1 1
FGS_R.LSO.valid TRUE FALSE TRUE FALSE FALSE TRUE
leader_pitch_delta 000 083 083 083 083 -4.35
System level guarantees TRUE TRUE TRUE TRUE TRUE FALSE

“Argument Engineering”

e Disparate kinds of evidence throughout the system
> Probabilistic
> Resource
o Structural properties of model
o Behavioral properties of model

* How do we tie these things together?

» Evidence graph, similar to proof graph in PVS
> Shows evidential obligations that have not been discharged

* SRl is working on this: Evidential Tool Bus (ETB)

> This seems to be a reasonable approach for tying tool results
together

> Declarative (like make or ant), but more powerful (uses Datalog)

Integration with AADL

* Type representations
o Currently we use “homebrew” property set for typing information
o AADL data modeling annex!?

e |Inheritance and Refinement
o Extends from same AADL class
o Implements from different AADL class

> Contracts should preserve behavioral subtyping
Weaken assumptions
Strengthen guarantees

> Some subtleties:

For existential properties over traces (CTL), this refinement is generally unsound.
Probably only want to support universal properties (like LTL)

* Binding of logical system to physical system

o Contracts are built on many assumptions involving physical system involving
resources. Currently these are not addressed in the temporal logic, but
externally

> How do we represent physical failures in logical contracts?

Conclusions

* AADL is very nice for designing systems

> Good way to describe hardware and software

° Lots of built-in analysis capabilities

* Allows new system engineering approaches
° |teration between reqgs and design

> Specification and use of architectural patterns

* Looking at behavioral and structural analysis
> Still lots of work to do!
° ..but already can do some interesting analysis with tools

o Sits in a nice intersection between requirements engineering and
formal methods

o Starting to apply this to large UAV models for security
properties in the SMACCM project

System Architectural Modeling & Analysis

/ System \ g;?‘

Architecture Q,—o’éb
Model X

Logical

Security
Analysis

K Physical J

Performance
Analysis

Auto

Level C
Unclassified

Ada Level A
Code Top Secret

IMP\Cabinet

Commol Computing Resourge 3 /‘
Commép Computing Resoyrce 2 / ‘
Common Computing Resource 1 l
\ 4
App A App B App C

Generate

> Sys Specific Middleware
(Schedule, Communication Routes)

Reusable Trusted Middleware
(RTOS, I/0 , RT-CORBA)

Separation Kernel

v v
IMA BUS >

System Architecture Development

3uswdo[Ad (] JusUOdWOD) DJBMIOS

Thank you!

Coafig %&

K < <<

Té “
Teseklkurler %

