
Software Engineering Center

Compositional Safety and Security Compositional Safety and Security

Analysis of Architecture ModelsAnalysis of Architecture Models

Mike Whalen

Program Director

University of Minnesota Software Engineering Center

AcknowledgementsAcknowledgements

 Rockwell Collins (Darren Cofer, Andrew

Gacek, Steven Miller, Lucas Wagner)

 UPenn: (Insup Lee, Oleg Sokolsky)

 UMN (Mats P. E. Heimdahl)

 CMU SEI (Peter Feiler)

February, 2012 2IFIP 2012: Mike Whalen

Main MessagesMain Messages

February, 2012 IFIP 2012: Mike Whalen 3

We need a variety of reasoning approaches and

partitioning methods for system-level

requirements and analysis

Your How is My What: requirements vs.

design is a often matter of perspective

Requirements hierarchies often follow system

and software architectures.

Component Level Formal Analysis EffortsComponent Level Formal Analysis Efforts

February, 2012 IFIP 2012: Mike Whalen 4

February, 2012 IFIP 2012: Mike Whalen 5

© 2010 Carnegie Mellon University

An Overview of AADL V2

6

Mismatched Assumptions

System Engineer Control Engineer

A
p

p
lic

a
tio

n
 D

e
v
e
lo

p
e
r

S
y
s

te
m

 U
s

e
r

System

Under

Control

Control

System

Compute

Platform

Runtime

Architecture

Application

Software

Embedded SW

System Engineer

Physical Plant

Characteristics

Lag, proximity

Data Stream

Characteristics

ETE Latency (F16)

State delta (NASA)

Measurement Units

Ariane 4/5

Air Canada

Concurrency

Communication

ITunes crashes on dual-cores
Distribution & Redundancy

Virtualization of HW

(ARPA-Net split)

Operator Error

Lag, proximity

Hardware

Engineer

Slide from: An Overview of AADL v2 by Peter Feiler, 2010

VisionVision

February, 2012 IFIP 2012: Mike Whalen 7

System design & verification through pattern
application and compositional reasoning

COMPUTING

RESOURCE
SENSOR

LRU

FAIL-SILENT

NODE FROM

REPLICAS

COMPUTING

RESOURCE A

COMPUTING

RESOURCE B

VOTE

MULTIPLE

DATA

SENSOR 1

SENSOR 2

SENSOR 3

VERIFIED

AVAILABILITY

VERIFIED

INTEGRITYARCHITECTURE

MODEL

COMPOSITIONAL PROOF OF CORRECTNESS

(ASSUME – GUARANTEE)

SAFETY, BEHAVIORAL,

PERFORMANCE PROPERTIES

A
B

S
T

R
A

C
T

IO
N

V
E

R
IF

IC
A

T
IO

N

R
E

U
S

E

COMPOSITION

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

PATTERN &

COMP SPEC

LIBRARY

SYSTEM MODELING

ENVIRONMENT

INSTANTIATE ARCH

PATTERNS

& CHECK

CONSTRAINTS

COMPOSITIONAL

REASONING &

ANALYSIS

SYSTEM

MODEL

(AADL)

AUTO

GENERATE

SYSTEM

IMPLEMENTATION

ARCH

PATTERN

MODELS

COMPONENT

MODELS

ANNOTATE

& VERIFY

MODELS

COMPONENT

LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

ApproachApproach

8

Design Flow

Complexity-reducing design patterns

• Capture best solutions to architectural design

problems

• Reuse of formally verified solutions

• Increase level of design abstraction 2

Compositional verification

• Reason about system behavior based on

contracts and system design model structure

• Compositional approach scales to large

software systems

3
System architecture modeling

• Apply formal specification and analysis tools to

system-level design

• Separate component specification and

implementation

• Automated model translation
1

February, 2012 IFIP 2012: Mike Whalen© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

ComplexityComplexity--Reducing Reducing

Architectural Design PatternsArchitectural Design Patterns

 Design pattern = model transformation

◦ p : M M (partial function)

◦ Applied to system models

 Reuse of verification is key

◦ Not software reuse

◦ Guaranteed behaviors associated with
patterns (and components)

 Reduce/manage system complexity

◦ Separation of concerns

◦ System logic vs. application logic (e.g., fault tolerance)

◦ Process complexity vs. design complexity

 Encapsulate & standardize good solutions

◦ Raise level of abstraction

◦ Codify best practices
February, 2012 IFIP 2012: Mike Whalen 9© Copyright 2011 Rockwell Collins, Inc.

All rights reserved.

System Design Through Pattern ApplicationSystem Design Through Pattern Application

10

A
v
io

n
ic

s
S

y
s
te

m

Initial
System

Final
System

Pattern Application

S
y
s
te

m
 H

ie
r
a
r
c
h

y

Replicate Leader Selection PALS
Replicate

Active Standby Pattern

F
li

g
h

t
C

o
n

tr
o
l

F
li

g
h

t
G

u
id

a
n

c
e

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

February, 2012 IFIP 2012: Mike Whalen

System verification System verification

February, 2012 IFIP 2012: Mike Whalen 11

PATTERN &
COMP SPEC

LIBRARY

SYSTEM
MODELING

ENVIRONMENT

INSTANTIATE
ARCHITECTURAL

PATTERNS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

COMPOSITIONAL
REASONING &

ANALYSIS

Instantiation:
Check structural constraints,
Embed assumptions &
guarantees in system model

Compositional Verification:
System properties are verified
by model checking using
component & pattern
contracts

Reusable Verification:
Proof of component and pattern
requirements (guarantees) and
specification of context
(assumptions)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Hierarchical reasoning about Hierarchical reasoning about

systemssystems
 Avionics system requirement

 Relies upon

◦ Accuracy of air data sensors

◦ Control commands from FCS

 Mode of FGS

 FGS control law behavior

 Failover behavior between FGS

systems

 ….

◦ Response of Actuators

◦ Timing/Lag/Latency of

Communications

February, 2012 IFIP 2012: Mike Whalen 12

FCS

Avionics

System
Under single-fault assumption,

GC output transient response is

bounded in time and magnitude

AutopilotFGS_L FGS_R

ADS_L ADS_R …

…

System

Modes

Control

Laws
Co-ord

Compositional Reasoning for Active Compositional Reasoning for Active

StandbyStandby
 Want to prove a transient

response property

◦ The autopilot will not cause a sharp
change in pitch of aircraft.

◦ Even when one FGS fails and the
other assumes control

 Given assumptions about the
environment

◦ The sensed aircraft pitch from the
air data system is within some
absolute bound and doesn’t change
too quickly

◦ The discrepancy in sensed pitch
between left and right side sensors is
bounded.

 and guarantees provided by
components

◦ When a FGS is active, it will generate
an acceptable pitch rate

 As well as facts provided by
pattern application

◦ Leader selection: at least one FGS
will always be active (modulo one
“failover” step)

February, 2012 IFIP 2012: Mike Whalen 13

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

transient_response_1 : assert true ->

abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 : assert true ->

abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))

< CSA_MAX_PITCH_DELTA_STEP ;

Hierarchical reasoning between Hierarchical reasoning between

analysis domains.analysis domains.
 Avionics system requirement

 Relies upon

◦ Guarantees provided by

patterns and components

◦ Structural properties of

model

◦ Resource allocation feasibility

◦ Probabilistic system-level

failure characteristics

October 2012 AADL Meeting Mike Whalen 14

Platform

PALS

synchronous

communication

Replication

one node

operational

timing

constraints

not

co-located

Flight Control

System

Leader

Selection

leader transition

managed on

failure

A
S

S
U

M
P

T
IO

N
S

G
U

A
R

A
N

T
E

E
S

Under single-fault assumption,

GC output transient response is

bounded in time and magnitude

RT sched

& latency

Error

model

Behavior

Structure

Resource Probabilistic
Principled mechanism for

“passing the buck”

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Contracts Contracts

 Derived from Property

Specification Language

(PSL) formalism

◦ IEEE standard

◦ In wide use for hardware

verification

 Assume / Guarantee style

specification

◦ Assumptions: “Under

these conditions”

◦ Promises (Guarantees):

“…the system will do X”

 Local definitions can be

created to simplify

properties

February, 2012 IFIP 2012: Mike Whalen 15

Contract:

fun abs(x: real) : real = if (x > 0) then x else -x ;

const ADS_MAX_PITCH_DELTA: real = 3.0 ;

const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ;

const CSA_MAX_PITCH_DELTA: real = 5.0 ;

const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ;

property AD_L_Pitch_Step_Delta_Valid =

true ->

abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property AD_R_Pitch_Step_Delta_Valid =

true ->

abs(AD_R.pitch.val - prev(AD_R.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property Pitch_lr_ok =

abs(AD_L.pitch.val - AD_R.pitch.val) < FCS_MAX_PITCH_SIDE_DELTA ;

property some_fgs_active =

(FD_L.mds.active or FD_R.mds.active) ;

active_assumption: assume some_fgs_active ;

transient_assumption :

assume AD_L_Pitch_Step_Delta_Valid and

AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ;

transient_response_1 :

assert true -> abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 :

assert true ->

abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) <

CSA_MAX_PITCH_DELTA_STEP ;

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Reasoning about contractsReasoning about contracts

 Notionally: It is always the case that if the
component assumption is true, then the component
will ensure that the guarantee is true.

◦ G(A P);

 An assumption violation in the past may prevent
component from satisfying current guarantee, so
we need to assert that the assumptions are true
up to the current step:

◦ G(H(A) P) ;

September, 2012 16LCCC 2012: Mike Whalen

Systems of ContractsSystems of Contracts

 Architectures are hierarchically composed

in layers.

◦ Visually: a box and

line diagram

◦ Formally you can

view a layer as a

system S:

S = (A, P, C)

 C is a finite set of

component contracts

C: ℙ (A x P)

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

February, 2012 17IFIP 2012: Mike Whalen

Reasoning about ContractsReasoning about Contracts

 Given the set of component contracts:

Γ = { G(H(Ac) Pc) | c ∈ C }

 Architecture adds a set of obligations that

tie the system assumption to the

component assumptions

 This process can be repeated for any

number of abstraction levels

September, 2012 18LCCC 2012: Mike Whalen

Composition FormulationComposition Formulation

 Suppose we have

 Then if for all q ∈ Q

◦ Γ G((Z(H(Θq)) ^ Δq) q)

 Then:

G(q) for all q ∈ Q

 [Adapted from McMillan]
September, 2012 19LCCC 2012: Mike Whalen

A concrete exampleA concrete example

 Order of data flow through

system components is

computed by reasoning engine

◦ {System inputs}

{FGS_L, FGS_R}

◦ {FGS_L, FGS_R} {AP}

◦ {AP} {System outputs}

 Based on flow, we establish

four proof obligations

◦ System assumptions

FGS_L assumptions

◦ System assumptions

FGS_R assumptions

◦ System assumptions +

FGS_L guarantees +

FGS_R guarantees

AP assumptions

◦ System assumptions + {FGS_L, FGS_R, AP} guarantees System guarantees

 System can also handle circular flows, but user has to choose where to break cycle

February, 2012 IFIP 2012: Mike Whalen 20

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L

THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

Architecture of Generic Infusion Architecture of Generic Infusion

PumpPump

 GPCA = Generic Patient-Controlled Analgesia

 Product Family architecture

GPCA Pump

Pump Hardware

Flow Rate

Detector
Door

Pump

Position

Humidity Temp
Air

Pressure

Battery
Power

Supply

Air In Line

Detector

Pump

Motor
Buzzer

Pump Controller

Software

Infusion

Command

GPCA Pump ExampleGPCA Pump Example

 Property of Interest:

◦ If a “Pump Stop” command is received, then

within 1 second, measured flow rate shall be

zero.

 We will prove this property

compositionally based on the architecture

of the Pump subsystem.

Proof of GPCA PumpProof of GPCA Pump

GPCA Pump

Pump Hardware

Flow Rate

Detector

Pump

Position

Humidity Temp

Battery
Power

Supply

Pump

Motor
Buzzer

Pump Controller

Software

Infusion

Command

Assertion: When a “Pump Stop” infusion command is

received, then within 1 second, measured flow rate

shall be zero.

…

…

…

Proof of Proof of ReciprocatingReciprocating PumpPump

GPCA Pump

Reciprocating Pump Hardware

Flow Rate

Detector

Humidity Temp

Battery
Power

Supply

Pump

Motor
Buzzer

Pump Controller

Software

Assertion: When a “Pump Stop” infusion command is received, then

within 1 second, measured flow rate shall be zero.

When pump stop

command occurs,

pump motor will be

switched off when

pump motor position

reaches no-ambient

flow state.

Door

Assertion: When

powered on, pump

cycles between ambient

and no-ambient flow

states every 300 ms.

if pump is in no

ambient flow position

and pump motor is off,

then flow rate will be

zero within 200 ms

Proof of Proof of RotaryRotary PumpPump

GPCA Pump

Rotary Pump Hardware

Flow Rate

Detector

Humidity Temp

Battery
Power

Supply

Pump

Motor
Buzzer

Pump Controller

Software

Assertion: When a “Pump Stop” infusion command is received, then

within 1 second, measured flow rate shall be zero.

When pump stop

command occurs,

pump motor will be

immediately switched

off.

Door
if pump is in no

ambient flow position

and pump motor is off,

then flow rate will be

zero within 400 ms

ARCHITECTURE AND ARCHITECTURE AND
REQUIREMENTSREQUIREMENTS

February, 2012 IFIP 2012: Mike Whalen 26

Requirements or Design Information?Requirements or Design Information?

1. The patient shall never be infused with a single air
bubble more than 5ml volume.

2. When a single air bubble more than 5ml volume is
detected, the system shall stop infusion within 0.01
seconds.

3. When a single air bubble more than 5ml volume is
detected, the system shall issue an air-embolism
command.

4. When air-embolism command is true, the system
shall stop infusion.

5. When air-embolism command is received, the
system shall stop piston movement within 0.1
second.

9/25/2012 Mike Whalen - TwinPeaks 2012 27

A: BothA: Both
1. The patient shall never be infused

with a single air bubble more than

5ml volume.

2. When a single air bubble more

than 5ml volume is detected, the

system shall stop infusion within

0.01 seconds.

3. When a single air bubble more than

5ml volume is detected, the system

shall issue an air-embolism command.

4. When air-embolism

command is true, the

system shall stop infusion.

5. When air-embolism command is

received, the system shall stop

piston movement within 0.1 seconds

PATIENT THERAPY SYSTEM

INFUSION SYSTEM

AIR BUBBLE

SENSOR
DRUG

DELIVERY

HARDWARE

PUMP SYSTEM

PUMP

HARDWARE

PUMP

CONTROLLER

9/25/2012 Mike Whalen - TwinPeaks 2012 28

9/25/2012 Mike Whalen - TwinPeaks 2012 29

Your How is My WhatYour How is My What

 Systems are hierarchically organized

 Requirements vs. architectural design must be a

matter of perspective

 Need better support for N-level

decompositions for requirements and

architectural design

◦ Reference model support

 How do elements “flow” between world, machine, and

specification as we decompose systems?

◦ Certification standard support (DO-178B/C)

 Currently: two levels of decomposition: “high” and “low”

9/25/2012 Mike Whalen - TwinPeaks 2012 30

Twin PeaksTwin Peaks

9/25/2012 Mike Whalen - TwinPeaks 2012 31

Often, Architecture Comes FirstOften, Architecture Comes First

 Candidate architectures from previous

systems

◦ Designer familiarity

◦ Cost amortization

 Program families

 Certification or criticality requirements

Architectural choices often restrict set

of achievable system requirements.

9/25/2012 Mike Whalen - TwinPeaks 2012 32

Flow is BiFlow is Bi--directionaldirectional

9/25/2012 Mike Whalen - TwinPeaks 2012 33

Requirements Validation and Requirements Validation and

VerificationVerification
 Given hierarchical systems, where are the most

serious problems with requirements?

◦ At the component level?

◦ At the top-level?

◦ Somewhere in the middle?

 A hypothesis:

◦ The most problematic are the layers in the middle

◦ Errors in decomposing system requirements become

integration problems.

 These are requirements to be both verified and

validated.

9/25/2012 Mike Whalen - TwinPeaks 2012 34

STRUCTURAL STRUCTURAL
PROPERTIESPROPERTIES

February, 2012 IFIP 2012: Mike Whalen 35

Structural PropertiesStructural Properties

 Often, we are interested in properties

about a model structure

◦ Given the processor resources, is the system

schedulable?

◦ Is my software correctly distributed across

different physical resources?

◦ Are my end-to-end timing assumptions met?

 Often these involve checking the mapping

between the software and the hardware.

February, 2012 IFIP 2012: Mike Whalen 36

37

Structural PropertiesStructural Properties

 Software + HW platform

◦ Process, thread, processors, bus

 Ex: PALS vertical contract

◦ PALS timing constraints on platform

◦ Check AADL structural properties

 Guarantees

◦ Sync logic executes at PALS_Period

◦ Synchronous_Communication

=> “One_Step_Delay”

 Assumptions (about platform)

◦ Causality constraint:

Min(Output time) ≥ 2ε – μmin

◦ PALS period constraint:

Max(Output time) ≤ T - μmax - 2ε

Software

PlatformFebruary, 2012 IFIP 2012: Mike Whalen

38

PALS assumptions in AADLPALS assumptions in AADL

Compute_Execution_Time

Latency

Ti Ti+1

(±) (±)

Output

message

Input

message

available

Period

Deadline

Dispatch_Offset (if imposed)

Dispatch_Jitter (if describing max scheduling delay)

Output_Time

Clock_Jitter

Thread execution

(±)

Latest period start

on other node

Earliest output message

Min(Output_Time)

Min(Latency)

Causality Constraint

Thread execution

Max(Latency)

(±) (±)

Latest output

message

Deadline

Latest period start

Earliest period start

on other nodePeriod

Max(Output_Time)

PALS Period Constraint
February, 2012 IFIP 2012: Mike Whalen

39

Structural property checksStructural property checks

 Contract

◦ Platform model satisfies

PALS assumptions

 Attached at pattern

instantiation

◦ Model-independent

◦ Assumptions

◦ Pre/post-conditions

 Lute theorems

◦ Based on REAL

◦ Eclipse plug-in

◦ Structural properties in

AADL model

PALS_Threads := {s in Thread_Set | Property_Exists(s,

"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");

PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");

PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=

Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=

{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period

foreach s in PALS_Threads do

check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");

end;

theorem PALS_Causality

foreach s in PALS_Threads do

PALS_Group := PALS_Group(s);

Clock_Jitter := Max_Thread_Jitter(PALS_Group);

Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});

Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};

check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency

else

true);

end;

February, 2012 IFIP 2012: Mike Whalen

40

Tool Tool ChainChain

AADL

SysML-AADL translation

EDICT:

Architectural

patterns

Lute:

Structural

verification

AGREE:

Compositional behavior

verification

OSATE:

AADL modeling

Enterprise

Architect

Eclipse

KIND

SysML

Lustre

February, 2012 IFIP 2012: Mike Whalen

February, 2012 IFIP 2012: Mike Whalen 41

Research ChallengesResearch Challenges

Structural and Behavioral PropertiesStructural and Behavioral Properties

Theorem RMA

foreach e in Processor_Set do

Proc_Set(e) := { x in Process_Set |

Is_Bound_To(x, e) } ;

Threads := { x in Thread_Set |

Is_Subcomponent_Of(x, Proc_Set) }

check (sum

(get_property_value (Threads

“RTOS_properties::Utilization”)) <=

(Cardinal (Threads) *

(2 ** (1 / Cardinal (Threads))) -1)) ;

End RMA ;

Assertion: My system is schedulable

using Rate Monotonic Scheduling.

Assertion: If a “Pump Stop” command is

received, then within 1 second the

measured flow rate shall be zero.

PSL_contract

property no_flow_after_stop :

after

(not (infusion_control_in.Pump_On))

(exists

flow_rate_detector_out.Rate = 0

within

STEPS_PER_SECOND *1) ;

assert (no_flow_after_stop) ;

end PSL_contract;

Checkable with Lute Checkable with AGREE

Structural (Non-functional) Properties:

Analyze conformance, optimization

properties for hardware resources and

model structure.

Behavioral (functional) Properties:

Analyze system behavior. Behavioral

properties may use structural properties.

Are these the “right” logics?Are these the “right” logics?

 Simpler logics have benefits

◦ Primary benefit: much simpler to analyze

◦ AADL error annex is (mostly) propositional

 Makes analysis simpler

 Supports useful categorization of errors

◦ Datalog-style logics support “timeless” analysis

 The Lute checker is essentially a datalog interpreter

 More complicated logics are necessary for certain

properties

◦ Richer types (e.g., algebraic types for XML messages)

◦ Quantification

February, 2012 IFIP 2012: Mike Whalen 43

Dealing with TimeDealing with Time

 Pure synchrony or asynchrony

 Uniform discrete time

◦ Choose fixed time quantum between steps

◦ This quantum need not be the same between

layers

◦ Adjust process behavior and requirements with

clocks.

 Non-uniform discrete time

◦ Calendar/Timeout automata advance system to

next interesting instant

 Dense time

February, 2012 IFIP 2012: Mike Whalen 44

M
O

S
T

 A
C

C
U

R
A

T
E

S
IM

P
L

E
S

T

ScalingScaling

 What do you do when
systems and subcomponents
have hundreds of
requirements?

◦ FGS mode logic: 280
requirements

◦ DWM: >600 requirements

 Need to create automated
slicing techniques for
predicates rather than code.

◦ Perhaps this will be in the form of
counterexample-guided
refinement

Assigning blameAssigning blame

 Counterexamples are often

hard to understand for big

models

 It is much worse (in my

experience) for property-

based models

 Given a counterexample,

can you automatically assign

blame to one or more

subcomponents?

 Given a “blamed” component,

can you automatically open

the black box to strengthen

the component guarantee?

Signal Step...

0 1 2 3 4 5
AD_L.pitch.val -0.91 -1.83 -2.74 -3.65 -4.35 -4.39
AD_L.pitch.valid FALSE TRUE FALSE TRUE TRUE FALSE
AD_R.pitch.val 0.83 -0.09 -1.00 -1.91 -2.83 -3.74
AD_R.pitch.valid TRUE FALSE TRUE FALSE FALSE TRUE
AP.CSA.csa_pitch_delta 0.00 0.13 0.09 0.26 0.74 -4.26
AP.GC_L.cmds.pitch_delta 0.00 -4.91 -4.65 -4.57 -4.74 -4.35
AP.GC_L.mds.active TRUE FALSE FALSE FALSE FALSE TRUE
AP.GC_R.cmds.pitch_delta 0.00 0.83 -4.43 -4.48 4.91 4.83
AP.GC_R.mds.active TRUE TRUE FALSE FALSE FALSE FALSE
Assumptions for AP TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FCI TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_L TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_R TRUE TRUE TRUE TRUE TRUE TRUE
FGS_L.GC.cmds.pitch_delta -4.91 -4.65 -4.57 -4.74 -4.35 0.09
FGS_L.GC.mds.active FALSE FALSE FALSE FALSE TRUE FALSE
FGS_L.LSO.leader 2 2 3 2 1 3
FGS_L.LSO.valid FALSE TRUE FALSE TRUE TRUE FALSE
FGS_R.GC.cmds.pitch_delta 0.83 -4.43 -4.48 4.91 4.83 3.91
FGS_R.GC.mds.active TRUE FALSE FALSE FALSE FALSE FALSE
FGS_R.LSO.leader 0 0 1 0 1 1
FGS_R.LSO.valid TRUE FALSE TRUE FALSE FALSE TRUE
leader_pitch_delta 0.00 0.83 0.83 0.83 0.83 -4.35
System level guarantees TRUE TRUE TRUE TRUE TRUE FALSE

February, 2012 46IFIP 2012: Mike Whalen

“Argument Engineering”“Argument Engineering”

 Disparate kinds of evidence throughout the system

◦ Probabilistic

◦ Resource

◦ Structural properties of model

◦ Behavioral properties of model

 How do we tie these things together?

 Evidence graph, similar to proof graph in PVS

◦ Shows evidential obligations that have not been discharged

 SRI is working on this: Evidential Tool Bus (ETB)

◦ This seems to be a reasonable approach for tying tool results

together

◦ Declarative (like make or ant), but more powerful (uses Datalog)

February, 2012 IFIP 2012: Mike Whalen 47

Integration with AADLIntegration with AADL

 Type representations

◦ Currently we use “homebrew” property set for typing information

◦ AADL data modeling annex?

 Inheritance and Refinement

◦ Extends from same AADL class

◦ Implements from different AADL class

◦ Contracts should preserve behavioral subtyping

 Weaken assumptions

 Strengthen guarantees

◦ Some subtleties:
 For existential properties over traces (CTL), this refinement is generally unsound.

 Probably only want to support universal properties (like LTL)

 Binding of logical system to physical system

◦ Contracts are built on many assumptions involving physical system involving
resources. Currently these are not addressed in the temporal logic, but
externally

◦ How do we represent physical failures in logical contracts?

October 2012 AADL Meeting Mike Whalen 48

ConclusionsConclusions

 AADL is very nice for designing systems

◦ Good way to describe hardware and software

◦ Lots of built-in analysis capabilities

 Allows new system engineering approaches

◦ Iteration between reqs and design

◦ Specification and use of architectural patterns

 Looking at behavioral and structural analysis

◦ Still lots of work to do!

◦ ..but already can do some interesting analysis with tools

◦ Sits in a nice intersection between requirements engineering and

formal methods

◦ Starting to apply this to large UAV models for security

properties in the SMACCM project

February, 2012 IFIP 2012: Mike Whalen 49

50

System Architectural Modeling & AnalysisSystem Architectural Modeling & Analysis

Target Hardware

Separation Kernel

Reusable Trusted Middleware
(RTOS, I/O , RT-CORBA)

Sys Specific Middleware
(Schedule, Communication Routes)

App A App B App C

 Common Computing Resource 1

Common Computing Resource 2

Common Computing Resource 3

IMA BUS

Performance

Analysis

Safety

Analysis
Security

Analysis

IMA Cabinet

ADL

System

Architecture

Model

Auto

Generate

Logical

Physical

Simulink

Model

VAPS

Model

C

Code

Ada

Code
C

Code

Level B

Classified Level C

Unclassified

Level A

Top Secret

Im
plements

A
bs

tra
ct

s

System Architecture Development

So
ftw

are
 C

o
m

p
o
n
e
n
t D

e
ve

lo
p
m

e
n
t

February, 2012 IFIP 2012: Mike Whalen

Thank you!Thank you!

February, 2012 IFIP 2012: Mike Whalen 51

