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Chair’s Foreword 
 

 
Welcome to AVICPS 2012, the 3rd Workshop on Analytical Virtual Integration of Cyber-Physical 
Systems. 
 
The goal of the workshop is to explore architectural design patterns, tools and the theoretical 
analytical foundations for creating common system-wide composition models, where key 
properties can be studied and guarantees provided before the start of actual development.  The 
concept of virtual integration has emerged with the advent of model-based development.  Models 
allow us to reason about the system and predict its properties before the system is built.  In this 
way, we can discover design flaws early in the development process, when errors are easier and 
cheaper to fix.  A large fraction of errors in the system design emerge during integration, therefore 
analyzing integration at the modeling level is of particular importance. 
 
Cyber-physical systems (CPS) bring an additional level of complexity to system in general, and to 
the problem of integration in particular.   CPS components may affect each other through digital 
communication channels, as in any other computer-based system, but also by coupling through 
the physical world.  Physical influence on the digital communication channels has to be considered 
as well.   
 
This year, AVICPS brings together researchers addressing multiple aspects of virtual integration.  
The workshop includes papers on various modeling approaches for CPS components and system 
environments, architecture-driven system development, safety analysis, among others.  
Presentations of contributed papers are supplemented by two keynote talks by Peter Feiler 
(Software Engineering Institute) and Michael Whalen (University of Minnesota), who bring 
complementary perspectives on the area. 
 
As in the past, AVICPS is held together with the Real-Time Systems Symposium, which keeps us 
in touch with the larger community of researchers exploring related problems.  We are grateful to 
RTSS organizers for providing this opportunity and handling many essential aspects of the 
workshop organization.  We also acknowledge generous support of the Software Engineering 
Institute and PRECISE Center at the University of Pennsylvania. Finally, our sincere thanks go to 
the program committee members. This workshop would not be possible without their time and 
effort. We hope you will enjoy participating in AVICPS 2012, and making it a success! 
 
Sagar Chaki and Oleg Sokolsky 

AVICPS 2012 co-Chairs 
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Workshop Agenda 

8:00 - 8:45am: Registration and Coffee 
 
8:45 - 9:00am: Welcome and Kick-off 
 
9:00 - 10:00am: Session #1 

 
Keynote #1: Analytical Architecture Fault Models (1 hr) 
Dr. Peter H. Feiler, Software Engineering Institute 
 
10.00 - 10:30am: Coffee break  
 
10:30 - 12:00pm: Session #2 
 
A Simulation Framework for Design of Mixed Time/Event-Triggered Distributed Control Systems 
with SystemC/TLM (25 mins) 
Zhenkai Zhang (zhenkai.zhang@vanderbilt.edu), Joseph Porter (jporter@isis.vanderbilt.edu), 
Xenofon Koutsoukos (xenofon.koutsoukos@vanderbilt.edu), Janos Sztipanovits 
(janos.sztipanovits@vanderbilt.edu)  
 
An Analytical Model of the CAN Bus for Online Schedulability Test (25 mins) 
Zhenwu Shi (zwshi@gatech.edu), Fumin Zhang (fumin@gatech.edu)  
 
Analytic Certification Technologies for Military Avionics (20 mins) 
Russell Kegley (russell.b.kegley@lmco.com), Jonathan Preston (jonathan.d.preston@lmco.com)  
 
Integration of Mixed-Criticality Cyber-Physical Systems with Criticality Layers (20 mins) 
Dionisio de Niz (dionisio@sei.cmu.edu), Anthony Rowe (agr@ece.cmu.edu) 
 
12:00 - 1:00pm: Lunch 
 
1:00 - 2:30pm: Session #3 
 
Keynote #2: Compositional Safety and Security Analysis of Architecture Models (1 hr) 
Dr. Michael W. Whalen, University of Minnesota 
 
Simulation-Based Design Verification of Real-Time Distributed Automotive Systems (25 mins) 
Shin'Ichi Shiraishi (sshiraishi@us.toyota-itc.com) 
 
2:30 - 3:00pm: Coffee break 

 
3:00 - 4:30pm: Session #4 
 
Online Construction of Analytical Prediction Models for Physical Environments: Application to 
Traffic Scene Modeling (25 mins) 
Anurag Umbarkar (aumbarka@ic.sunysb.edu), Shreyas Kodasara (sk.shreyas@gmail.com), Alex 
Doboli (adoboli@ece.sunysb.edu) 
 
Towards a Model-Driven Engineering Software Development Framework (20 mins) 
Julien Delange (julien.delange@gmail.com), Maxime Perrotin (Maxime.Perrotin@esa.int), Samir 
Bennani (samir.bennani@esa.int) 

 
Roundtable Discussion (40 mins) 
 
Closing Remarks (5 mins) 
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Keynote Speaker 1 

 

                                       
 

Dr. Peter H. Feiler, Software Engineering Institute 
 
 

Title: Analytical Architecture Fault Models 
 
Abstract: In this talk we summarize challenges in safety-critical software-intensive 
systems and introduce the concept of an analyzable architecture fault model expressed in 
SAE AADL and its Error Model Annex standard. We then present its use early in the 
development life cycle supporting hazard and fault impact analysis, show its ability to 
provide compositional analysis, discuss the interaction between operational and failure 
modes, and conclude with an illustration of its use to gain better understanding of the 
intricacies of desired timing behavior in safety-critical systems. 
 
Bio: Peter Feiler is a 27 year veteran and currently a senior member of the Research, 
Technology, and Systems Solutions (RTSS) program of the Software Engineering Institute 
(SEI). His current research interest is in improving the quality of safety-critical software-
intensive systems, aka. cyber-physical systems, through architecture-centric virtual 
integration and analysis throughout the development life cycle to complement 
traditional testing resulting in major reduction in rework and qualification costs. Peter 
Feiler has been the technical lead and main author of the SAE Architecture Analysis & 
Design Language (AADL) standard. He has a Ph.D. in Computer Science from Carnegie 
Mellon. 
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Keynote Speaker 2 

 

                                
 

Dr. Michael W. Whalen, University of Minnesota 
 

Title: Compositional Safety and Security Analysis of Architecture Models 
 
Abstract: This talk presents a design flow and supporting analysis tools for compositional 
analysis of system architectures.  We focus on system architecture models composed 
from libraries of components and complexity-reducing design patterns with formally 
verified properties. This allows new system designs to be developed rapidly using patterns 
that have been shown to reduce unnecessary complexity and coupling between 
components. Components and patterns are annotated with formal contracts describing 
their guaranteed behaviors and the contextual assumptions that must be satisfied for 
their correct operation. We describe the compositional reasoning framework that we 
have developed for proving the correctness of a system design, and illustrate it with an 
example based on an aircraft flight control system. 
 
Bio: Dr. Michael Whalen is the Program Director at the University of Minnesota Software 
Engineering Center.  Dr. Whalen is interested in formal analysis, language translation, 
testing, and requirements engineering.  He has developed simulation, translation, 
testing, and formal analysis tools for Model-Based Development languages including 
Simulink, Stateflow, SCADE, and RSML-e, and has published more than 30 papers on 
these topics.  He has led successful formal verification projects on large industrial 
avionics models, including displays (Rockwell-Collins ADGS-2100 Window Manager), 
redundancy management and control allocation (AFRL CerTA FCS program) and autoland 
(AFRL CerTA CPD program). 
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Abstracts:  
 
A Simulation Framework for Design of Mixed Time/Event-Triggered Distributed 
Control Systems with SystemC/TLM 

Zhenkai Zhang (zhenkai.zhang@vanderbilt.edu), Joseph Porter 
(jporter@isis.vanderbilt.edu), Xenofon Koutsoukos 
(xenofon.koutsoukos@vanderbilt.edu), Janos Sztipanovits 
(janos.sztipanovits@vanderbilt.edu)  
 

Mixed time/event-triggered (TT/ET) distributed control systems are complex systems which have 
emerged in many cyber-physical domains but have been difficult to evaluate at early design 
stages. In order to reveal design flaws as early as possible, this paper proposes a simulation 
framework based on an executable virtual platform model in SystemC/TLM. The executable 
platform is generated using a model-based approach from a system designed in the Embedded 
Systems Modeling Language (ESMoL). The virtual platform consists of three types of abstract 
models, the RTOS model, the communication system model, and the hardware model, to capture 
different behaviors of the mixed TT/ET distributed control systems. Preliminary results from a case 
study using a Quadrotor flight control system are 
used to illustrate the approach. 
 
 

An Analytical Model of the CAN Bus for Online Schedulability Test 
Zhenwu Shi (zwshi@gatech.edu), Fumin Zhang (fumin@gatech.edu)  
 

Controller area network (CAN) is a prioritybased bus that supports real-time communication. 
Existing 
schedulability analysis for the CAN bus is peformed at the design stage, by assuming that all 
message information is known in advance. However, in pratice, the CAN bus may run in a 
dynamic environment, where complete specifications may not be available at the design stage and 
operational requirements may change at system run-time. In this paper, we develop an analytical 
model that describes the dynamics of message transmission on the CAN bus. Based on this 
analytical timing model, we then propose an online test that effectively checks the schedulability of 
the CAN bus, in the presence of online adjustments of message streams. Simulations show that 
the online test can accurately report the loss of scheduability on the CAN bus. 
 

Analytic Certification Technologies for Military Avionics 

Russell Kegley (russell.b.kegley@lmco.com), Jonathan Preston 
(jonathan.d.preston@lmco.com) 
 
Historic approaches to upgrading the capabilities of military aircraft by inserting new technologies 
have become so costly that warfighters may be forced to operate with less than current technology 
can deliver. Even inserting new upgrades alongside the legacy systems can be very expensive if it 
requires large modifications to legacy software, triggering extensive retest. A way to meet this 
challenge is to insert upgrades alongside legacy systems, virtually replacing old capabilities with 
new while leaving the old software in place. This approach carries with it new challenges which 
might be met with analytic innovations.  

 
Integration of Mixed-Criticality Cyber-Physical Systems with Criticality Layers 

Dionisio de Niz (dionisio@sei.cmu.edu), Anthony Rowe (agr@ece.cmu.edu)  
 

Large Cyber-Physical Systems such as avionics and automotive systems often require large 
integration efforts etween third-party components. These components provide functionality at 
different levels of criticality yet share many of the same underlying resources (CPU, Memory, 
Network, Disk, Transducers). As a result, protections mechanisms are needed to prevent lower-
criticality task from interfering with higher-criticality ones. In this paper, we discuss how traditional 
temporal protection mechanisms such ARIC 653 partitions fail to fully protect high-criticality tasks 

mailto:zhenkai.zhang@vanderbilt.edu
mailto:jporter@isis.vanderbilt.edu
mailto:xenofon.koutsoukos@vanderbilt.edu
mailto:zwshi@gatech.edu
mailto:fumin@gatech.edu
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from lower-criticality ones. We then show how the Zero-Slack QRAM scheduler (ZSQRAM) can be 
used in multi-layer systems to avoid these problems. Furthermore, we propose the use of criticality 
layers based on the asymmetric protection scheme of ZS-QRAM in order to simplify this 
integration, increase its robustness, and reduce its resource usage. Finally, we discuss some open 
issues that need to be addressed in order to remove some of the limitations of this approach. 

 

Simulation-Based Design Verification of Real-Time Distributed Automotive 
Systems 

Shin'Ichi Shiraishi (sshiraishi@us.toyota-itc.com) 

 
In this paper, we propose a simulation-based verification technique for real-time distributed 
automotive systems. The proposed technique enables accurate simulation and it utilizes only 
limited information that can be collected in the design phases of development. In other words, the 
proposed technique enables the design verification of automotive systems. Therefore, the 
proposed design verification during early phases of development can potentially enhance the 
productivity of automotive systems. Moreover, the proposed technique is developed by extending 
the modeling fundamentals of a single commercial tool known as OPNET Modeler. This tool is 
widely used in the network technology domain, and it has been provided with sufficient technical 
support by its vendor. Thus, the proposed method is now available for immediate application to 
real-world automotive system development. 
 

Online Construction of Analytical Prediction Models for Physical Environments: 
Application to Traffic Scene Modeling 

Anurag Umbarkar (aumbarka@ic.sunysb.edu), Shreyas Kodasara 
(sk.shreyas@gmail.com), Alex Doboli (adoboli@ece.sunysb.edu) 
 

This paper presents a methodology to model the dynamics of traffic scenes, including the 
participating vehicles, vehicle clusters, the attributes and relations of the scene elements, and 
related events, like cluster merging and splitting. Compared to other methods, this methodology 
constructs the models online using data coming from sensors. The main steps are to identify the 
elements of a scene, to find the relations among the elements, and to construct analytical 
prediction models for the traffic scene dynamics. The paper discusses all the related theoretical 
aspects, including ontologies for traffic scene description, stochastic prediction of event 
sequences, and vehicle and cluster identification using sound-based vehicle localization. 
 

Towards a Model-Driven Engineering Software Development Framework 

Julien Delange (julien.delange@gmail.com), Maxime Perrotin (Maxime.Perrotin@esa.int), 
Samir Bennani (samir.bennani@esa.int) 

 
Design and Implementation of Safety-Critical Systems is becoming very difficult becauses it 
involves many 
requirements coming from different engineering domains. Due to the increase of complexity, 
software of such systems can no longer be produced with traditional methods, which show their 
limit over time. In that context, new development approaches have to be introduced to avoid actual 
development traps and pitfalls. Among them, the Model-Driven Engineering approach consists at 
representing system artifacts with models and autogenerate the code by refining them from high-
level concepts down to the code. However, as for every new approach, it also brings new 
problems such as requirements consistency among the different notations (models) as well as 
integration issues (for example, making sure that implementation code from different models will 
behave correctly when merged on a single execution platform). 
 
This article presents our experience for integrating Guidance and Navigation Control (GNC) 
algorithms designed with Application Models (Simulink) with Architecture Models (AADL). The 
process relies on code generator for both models and integrate it on a typical execution platform. 
In particular, we focus on the challenges of the integration, illustrating the practical problems we 
faced for producing a space system using a Model-Driven Engineering Approach.
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Simulation-Based Design Verification of Real-Time Distributed Automotive Systems

Shin’ichi SHIRAISHI

TOYOTA InfoTechnology Center, U.S.A., Inc.
465 Bernardo Avenue

Mountain View
CA 94043

Email: sshiraishi@us.toyota-itc.com

Abstract—In this paper, we propose a simulation-based veri-
fication technique for real-time distributed automotive systems.
The proposed technique enables accurate simulation and it
utilizes only limited information that can be collected in the
design phases of development. In other words, the proposed
technique enables the design verification of automotive sys-
tems. Therefore, the proposed design verification during early
phases of development can potentially enhance the productivity
of automotive systems. Moreover, the proposed technique is
developed by extending the modeling fundamentals of a single
commercial tool known as OPNET Modeler. This tool is widely
used in the network technology domain, and it has been
provided with sufficient technical support by its vendor. Thus,
the proposed method is now available for immediate application
to real-world automotive system development.

Keywords-Automotive Systems, System Design Verification,
Simulation, Real-Time Systems, Controller Area Network,
OPNET Modeler

I. INTRODUCTION

Automotive systems are highly complex distributed em-
bedded systems. For example, a certain luxurious car em-
ploys several automotive systems constructed on the basis
of complex networks wherein nearly 100 electronic control
units (ECUs) are interconnected. In order to efficiently
develop such complex systems, system design verification is
required during the early phases of development. Moreover,
the upcoming automotive safety standard (ISO 26262 [1])
stipulates that design phase verification is required to ensure
high-level functional safety.

In spite of such a high demand for early-phase verifi-
cation in real-world automotive system development, there
is no straightforward approach to design verification. This
drawback is particularly critical in software development;
hence, early-phase verification before the implementation
phase is not possible without prototyping. Unfortunately,
existing techniques cannot simultaneously deal with the
various aspects of automotive systems, such as, (1) real-time
systems, (2) complex distributed systems based on networks,
and (3) cost-sensitive system development.

Regarding the first aspect, most automotive systems are
real-time systems; an accurate analysis is required in terms

of the timeliness. The timeliness of automotive systems is
usually verified by using cycle-accurate simulation tech-
niques with instruction set simulators. This type of simula-
tion is generally known as virtual prototyping, and it requires
software implementation, i.e., a set of source code. Although
virtual prototyping allows us to avoid hardware prototyping,
it does not enable the design-phase verification of software.
Virtualization can also be achieved using virtual platforms.
Virtual platforms enable us to implement software without
any RTL descriptions of its execution platform (hardware);
however, it requires a set of source code.

The second aspect implies that most automotive systems
are highly distributed systems based on multiple intercon-
nected ECUs. In other words, for design verification, it is not
sufficient to consider only the software used in automotive
systems, and its execution platform (hardware part), includ-
ing microcontrollers, RAMs, and ROMs. Such hardware and
software components are the main verification objectives in
simulations based on virtual prototyping or virtual platforms;
however, the network component of automotive systems is
beyond their scope. Thus, we need an end-to-end verification
technique for the network component, which interconnects
the ECUs, hardware, and software.

The third aspect reflects the strict cost constraint on
automotive system development. This implies that car man-
ufacturers (OEMs) cannot afford to implement all the nec-
essary development techniques as in-house tools. Thus, we
need to effectively use commercial tools that support early-
phase verification, and exploit technical support from their
vendors. A recent paper [2] proposes a holistic simulation
technique for automotive systems; however, its pragmatic
application is unlikely because it does not offer any tool
implementation. Another recent paper [3] presents a co-
simulation technique based on multiple simulation tools.
Despite the advantages of such techniques, they are not
considered practical from the viewpoint of the purchase and
maintenance cost of multiple commercial tools.

Therefore, in this paper, we try to overcome the afore-
mentioned drawbacks and develop a novel design veri-
fication technique for automotive systems using a single



commercial tool. More precisely, we propose a high-level
modeling approach to the holistic simulation of real-time
distributed automotive systems. The proposed technique can
simultaneously simulate the detailed behavior of the three
types of components: software, hardware, and networks; it
utilizes only the limited information available in the design
phases. Thus, the proposed simulation technique enables
several end-to-end analyses that are essential for the veri-
fication of real-time systems. In addition, we can evaluate
the performance of systems under development in their
design phases. Such early performance estimation facilitates
system design verification; hence, the proposed technique
can potentially enhance the quality and productivity of
automotive systems. In addition, the proposed technique
depends only on a single commercial tool that is widely used
in the network technology domain. Therefore, this technique
has the potential for rapid deployment among stakeholders
involved in automotive system development.

II. REAL-WORLD EXAMPLE: REAL-TIME DISTRIBUTED

AUTOMOTIVE SYSTEMS

In this section, we present a real-world example of
complex automotive systems. Through this case study, we
clarify the difficulties related to the design verification of
automotive systems.

A. Automotive Systems Based on Complex In-Vehicle Net-
works

Figure 1 shows an in-vehicle controller area network
(CAN) [4] of a certain luxurious car in the Japanese market.
Three CAN buses are interconnected via a gateway ECU
(hereafter, referred to as a GW ECU), and each CAN bus
has 10–20 ECUs. Over this large-scale network, more than
200 types of messages are exchanged. The network shown
in Fig. 1 is a part of the entire structure of networks in
the sampled car. In general, luxury-class cars have approxi-
mately 100 ECUs that are interconnected by 10 buses such
as CAN and LIN (local interconnect network) [5] buses.
This implies that besides the GW ECU shown in Fig. 1,
luxurious cars have several types of GW ECUs with different
specifications. For example, one GW ECU bridges different
speed buses such as 250 kbps and 500 kbps; another GW
ECU bridges different protocols such as CAN and LIN, and
so on.

Networks in which several ECUs are interconnected serve
as platforms that support various real-time automotive sys-
tems such as adaptive cruise control systems, vehicle dy-
namics integrated management systems, and pre-crush safety
systems. For example, an adaptive cruise control system
requires an engine control ECU, a skid control ECU, and a
radar sensor ECU; these ECUs must be interconnected via a
network. Simultaneously, the pre-crush safety system utilizes
the same components. Similarly, numerous components are
shared among several different systems; thus, networks
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Figure 1. Distributed Automotive Systems (CAN-based Network).

and GW ECUs are typical components shared by multiple
systems.

To summarize, a new end-to-end analysis technique is
required for shared components such as networks and GW
ECUs for the purpose of system design verification, which
is required by the ISO 26262 standard.

B. Architecture of CAN–CAN Gateway ECU

When we discuss design verification of automotive sys-
tems, we need to focus on the fact that GW ECUs are
important components for system design verification. As
mentioned earlier, most automotive systems are real-time
systems; hence, we need to analyze the timeliness of such
systems in an end-to-end manner. On the other hand, delays
produced by GW ECUs have a significant impact on end-
to-end analysis; however, the early estimation of end-to-end
delays is complicated owing to the complex functionalities
of GW ECUs. Paradoxically, this means that GW ECUs are
ideal subjects for discussing design verification in detail;
hence, they are central to this paper, hereafter. It should be
noted that the following discussion can be applied to other
types of ECUs.

Figure 2 shows the architecture of the GW ECU shown in
Fig. 1. This figure indicates that the GW ECU is equipped
with priority control in order to realize end-to-end QoS man-
agement. Moreover, a computation-intensive functionality,
i.e., routing, is realized by hardware, whereas the others are
implemented by software. This design decision is motivated
by a trade-off between the latency and the flexibility of the
GW ECU. This implies that design verification must be a
co-verification of hardware and software. In addition to the
hardware and software components, some buffers are located
at the borders among hardware, software, and networks. The
behavior analysis of these buffers, such as a buffer overflow
or underflow, is critical to design verification.

III. POTENTIAL APPROACHES TO SYSTEM

VERIFICATION AND THEIR DRAWBACKS

There exist two potential approaches to system design ver-
ification: an analytical (formal) approach and a simulation-
based approach. The analytical approach is effective in in-
vestigating corner cases. If we apply the analytical approach
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Figure 2. Architecture of Multi-Channel CAN Gateway ECU.

to the GW ECU discussed in Sect. II, we can estimate the
maximum delay, maximum buffer usage, etc. On the other
hand, the simulation-based approach can be adopted for
performance analyses. For example, we can estimate several
performance parameters such as mean delays and average
buffer utilization. Both these approaches are important for
system design verification because they can be applied
to different design subphases. Although we are actually
investigating the analytical approach, we will focus on the
simulation-based approach in the remainder of this paper
owing to space constraints1.

Reviewing the discussions in Sect. II, a system design
verification technique must be able to handle the following
two types of behavior.

1) Inter-ECU behavior: The interconnection of ECUs via
networks.

2) Intra-ECU behavior: The interaction between the hard-
ware and the software within ECUs.

In the following sections, we will discuss two different types
of approaches that can potentially handle the two behaviors
stated above.

A. Network-oriented Approach

The first potential approach to system design verification
is to use network simulation technologies. This approach
seems to be able to perform end-to-end analysis of automo-
tive systems. Network simulation tools, e.g., OPNET Mod-
eler [7], enable us to simulate the network component, i.e.,
CAN, LIN buses, etc. Unfortunately, such a simulation is
not sufficient for the holistic analysis of complex automotive
systems such as the one shown in Fig. 1. As discussed in
Sect. II, the GW ECU shown in Fig. 1, which interconnects
multiple CAN buses, provides complex functionalities via
software. More precisely, it enables priority control as shown
in Fig. 2. Thus, it is not feasible to simplify the GW ECU
into a simple delay element that can be easily handled by
network simulators. In other words, network simulators can-
not replicate the detailed behavior of the GW ECU, which
is dominant in design verification and must be analyzed
through simulation.

1See [6] for details of our research on the analytical approach.
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B. Hardware Virtualization Approach

The second potential approach is to use co-verification
techniques with hardware virtualization that have been es-
tablished in the ESL (electronic system-level) field. For
example, the internal behavior of ECUs is usually ana-
lyzed via cycle-accurate techniques featuring instruction set
simulators, e.g., CoMET [8]. This type of technique is
known as virtual prototyping, and its typical workflow is
shown in Fig. 3. Virtual prototyping is useful for timeliness
verification of systems under development. However, it is
clear from Fig. 3 that virtual prototyping can be applied only
to test phases because it requires implemented software, i.e.,
a set of source code. Unfortunately, the cost of eliminating
defects in test phases is much higher that in design phases.
Furthermore, unlike network simulators, virtual prototyping
cannot enable end-to-end analysis of systems while consid-
ering network components such as CAN and LIN buses.

Virtualization can also be achieved using virtual plat-
forms. Although virtual platforms enable system verification
based on a hardware design, software implementation is
required. On the other hand, the objective of this paper is to
achieve system design verification based on both hardware
and software design specifications.

C. Co-simulation Approach

Co-simulation [3] is another potential approach to system
design verification. Combining the two techniques described
above would be possible from a technical point of view.
This approach can enable end-to-end analysis based on the
detailed behavior of ECUs. However, the co-simulation ap-
proach is not considered pragmatic because it uses multiple
tools for the same verification and it involves high running
costs.

As discussed in Sects. III-A and III-B, existing techniques
are insufficient for the realization of design verification of
automotive systems. Thus, a new verification technique is
required to deal with the combination of hardware, software,
and networks. On the other hand, future automotive systems
will be not be standalone systems, and their connectivity
will be mandatory. Thus, from the viewpoint that multiple
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automotive systems in numerous vehicles and a variety of
non-automotive systems are interconnected, the network-
oriented approach is a more attractive approach owing to its
potential in various types of network simulations. Therefore,
in this paper, we try to develop a new verification technique
by enhancing the network-oriented approach.

IV. HOLISTIC SIMULATION OF AUTOMOTIVE SYSTEMS

In order to resolve the problems described in Sect. III-A,
we propose an abstract behavior model of ECUs, which
is obtained by extending the modeling fundamentals of
OPNET Modeler [7]. By using the proposed method, we
can potentially achieve the holistic simulation of both the
network component and the internal component of ECUs
(hardware and software).

A. OPNET Modeler

OPNET Modeler enables the modeling and simulation of
several types of networks. OPNET Modeler creates network
models according to the following four steps, and then
realizes network simulation.

1) Network topology consists of multiple nodes.
2) Protocol stack within a node comprises processors.2

3) Behavior of a process is defined by a state machine.
4) Procedure within a state is described by C or C++

source code.
Thus, OPNET models have a hierarchy that consists of
four levels: nodes, processors, state machines, and code,
as shown in Fig. 4. This modeling approach enables the
effective simulation of protocol stacks; e.g., [9] and [10]
focus on the modeling of the SIP stack.

2The term processor is a special keyword in the OPNET Modeler
environment. It should be noted that the processor of OPNET Modeler
is different from well-known processors like x86, ARM, etc.
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Figure 5. Problems in Behavior Modeling of Software.

OPNET Modeler adopts a simulation scheme whereby
the values assigned to states within processors, i.e., delay
times, are accumulated. This modeling scheme is effective
for the simulation of protocol stacks; however, this scheme
cannot simulate the complex behavior of software, which can
stop an ongoing task and trigger another task. Therefore, we
cannot capture runtime software behavior such as preemp-
tion, interrupts, and timeouts by adopting the straightforward
scheme described above.

The reason for this problem can be explained by a simple
example shown in Fig 5. Figure 5 describes two types of
copy operations: the copy from Buffer #1 to Buffer #2 and
the copy from Buffer #2 to Buffer #3. These operations
are implemented as independent software tasks, Task #1
and Task #2, respectively. Here, let us assume that the
priority of Task #2 is higher than that of Task #1; in
contrast, the execution time of Task #1 is much longer
than that of Task #2, such that x � y. In this case, it
is possible that Task #2 preempts Task #1 in a real system.
However, OPNET Modeler cannot simulate this behavior,
and every execution of Task #1 finishes in x msec. In the
case of OPNET Modeler, Task #1 and #2 are described as
independent processors. The procedure of each processor,
which is described by the combination of a state machine
and source code, is treated as an atomic operation; thus,
one processor cannot preempt the other processor. Therefore,
OPNET Modeler cannot simulate the preemptive behavior
described above. The same problem can occur in the case
of software consisting of a single task and some interrupt
service routines.

B. Runtime Behavior Modeling of Software

In order to realize a simulation model that captures the
internal structure of ECUs, we need a new method to deal
with the complex behavior of software by overcoming the
problems mentioned in Sect. IV-A. Therefore, we develop
the following approach, which is compatible with OPNET
Modeler.

1) The software is composed of coarse-grained chunks
(hereafter, referred to as commands).
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2) The execution procedure of commands is modeled
by using a state machine within a processor whose
states are Initiation, Queueing, Start, End, and Idle
(see Fig.6).

3) The values of delay time are assigned to each command.
This modeling approach enables us to execute another com-
mand between Start and End of one command. Moreover,
queued commands represent low priority software tasks
waiting to run. Consequently, preemption, interrupts, and
timeouts can be simulated as shown in Fig. 7; hence,
we can build a simulation model that can replicate such
complicated behavior. In addition, the abstraction level of
software composed of commands is nearly similar to that
of the detailed design of software. Thus, we can regard
the command-based decomposition of software as a design
specification of software. In other words, we have obtained
a simulation technique based on the design specification
of software, which can be used to perform the design
verification of automotive systems.

The efficiency of the proposed technique is highly depen-
dent on the soundness of command models; hence, we must
define each command with appropriate granularity. When
we want to define a part of software with an appropriate
size for a single command, we can evaluate its validity
on the basis of its execution time. On the other hand, it
is well known that memory access is a dominant part of
most embedded software owing to its slowness. Thus, we
can define different types of memory accesses as distinct
commands, respectively. In the case of Fig. 2, the data copy
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Buffers within Priority Control

Command A
a ms

Command B
b ms

Command C
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Figure 8. Example Decomposition of Task into Commands

operation occurs from the FIFO for the V1 bus to the
corresponding buffer within the following priority control
unit as a single command; the same copy operation for
the steering bus occurs as another command, and so on.
The other types of operations unrelated to memory access,
e.g., calculation, flow of control, etc., can be treated as
a single chunk. For example, Fig. 8 shows the design
specification of a periodic task which copies from the FIFOs
to the buffers within the priority control units in Fig. 2. As
shown in this figure, we can define each copy operation
as a single command. Although this example is trivial, we
can create models for other complex tasks or interruption
service routines by following the same modeling strategy.
The proposed modeling technique is simple; however, it
provides sufficient simulation accuracy (see experimental
results in Sec. V).

C. Behavior Modeling of Hardware (Wired Logic) Compo-
nents

Figure 2 shows that a computation-intensive operation
is implemented using hardware. The same design strat-
egy of wired-logic acceleration is common among several
ECU designs. One example is the communication stack for
FlexRay [11], which requires high computational power; it is
executed by a hardware accelerator. Therefore, a simulation
technique for design verification must be able to handle these
hardware components in its simulation.

Fortunately, we can handle hardware components in an
easier manner as compared to software components. This
is because the deviation of the latency time of hardware
components does not vary much, whereas that of software
components dynamically fluctuates along with the runtime
scheduling of software tasks. More precisely, most hardware
accelerators used in ECUs are composed of combination
logic circuits or simple sequential logic circuits, as in the
case of Fig. 2. Thus, the latency time of such hardware
accelerators can be easily estimated. In addition, the fact that
the latency time of hardware components is much shorter
than that of software simplifies the simulation models of
hardware for delay analysis.



RX 

Register

V (500 kbps)

RX 

Register

MS (250 kbps)

Priority

Control

FIFO

FIFO

TX 

Register

TX 

Register

V

MS

Software

Figure 9. Architecture of Dual-Channel CAN Gateway ECU.

Actually, in the GW ECU architecture in Fig. 2, the
hardware component, which executes routing operations,
produces constant latency from the RxRegisters to the
FIFOs, unless simultaneous receptions of multiple messages
from different buses occur. This means that we only have
to consider such conflict conditions in simulation. Hence,
we can calculate the delay of a certain message from the
corresponding RxRegister to FIFO by simply multiplying
the latency time of the non-conflict case, i.e., two or three
times longer when simultaneously receiving from two or
three buses, respectively.

According to the aforementioned modeling strategy, OP-
NET Modeler can simulate the internal behavior of ECUs
while considering both hardware and software. Furthermore,
OPNET Modeler is inherently able to simulate CAN buses,
which interconnects multiple ECUs, in a straightforward
manner. Eventually, combining the three types of models,
i.e., the software model, hardware model, and network
model, we can perform an exhaustive holistic simulation of
automotive systems using a single tool (OPNET Modeler).

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
verify the effectiveness of the proposed holistic simulation
technique. In the experiments, two different types of GW
ECUs are used (see Table I). The first gateway (GW ECU
#1) is identical to the GW ECU shown in Fig. 2. The
second one (GW ECU #2) connects two CAN buses with
different speeds, and its architecture is shown in Fig. 9. The
simulation results of the proposed technique are compared
with those of conventional virtual prototyping using CoMET.

Figures 10(a) and 10(b) show the simulation (OPNET)
models obtained by applying the proposed technique to these
two GW ECUs. These simulation models enable several
types of analyses from the following viewpoints.
(1) Message delay.

• Delay in buffers and GW ECUs.
• End-to-end delay.

(2) Buffer utilization.
• Average buffer utilization.

Table I
SPECIFICATIONS OF TARGET GATEWAY ECUS.

Name GW ECU #1 GW ECU #2

Type CAN–CAN CAN–CAN

Channels 3 channels 2 channels

Buses V, Steering, and Chassis
buses

V and MS buses

Bus Speed 500 kbps 500 kbps (V) and 250
kbps (MS)

Logic Hardware & Software Software

Architecture Figure 2 Figure 9

• Buffer overflow and underflow.
• Maximum buffer usage and minimum buffer usage.

(3) Message lost.
Regarding message delay, comparisons between the pro-

posed OPNET-based simulation and CoMET-based simula-
tion are provided below. Figures 11 and 12 show com-
parisons of the mean message delays estimated using the
proposed technique and CoMET-based simulation. More
precisely, Figs. 11(a) and 12(a) illustrate the estimated GW
delays that are equivalent to the latency between message
reception in RX registers and transmission from TX regis-
ters. Figs. 11(b), 11(c), 12(b), and 12(c) partially show
the breakdown of the GW delays: estimated delays in RX
registers and FIFOs.

In these figures, we can find some deviations of the
delays estimated by the two approaches; however, they are
approximately less than 20% in most cases. In particular,
the proposed technique provides equivalent accuracy in the
cases of important messages with high priorities. In addition,
comparing Figs. 11 and 12, we can recognize that the
proposed technique can achieve high accuracy, irrespective
of the architectures of simulation targets (see Figs. 2 and 9).

Figures 13(a) and 13(b) show comparisons of estimated
end-to-end delays, which is the latency time between mes-
sage transmission from source ECUs and reception in sink
ECUs. This end-to-end delay analysis was infeasible when
we used only CoMET-based simulation; however, they were
feasible using the proposed holistic simulation technique.

From the viewpoints of buffer utilization such as overflow,
underflow, and maximum usage, and message lost, the
results obtained by using both the simulations are identical.
This implies that the deviations of the simulation results
shown in Figs. 11 and 12 do not have any impact on the
architecture decisions of the GW ECUs.

Based on the discussion presented above, the proposed
technique provides sufficient accuracy despite its coarse
granularity. Moreover, the proposed technique enables an
end-to-end delay analysis, unlike the CoMET-based tech-
nique. Besides the accuracy, the simulation speed of the pro-
posed method also enhances its effectiveness. The proposed
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Figure 10. OPNET Models of Distributed Automotive Systems.
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(a) Mean GW Delay.
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(b) Mean Delay in Rx Register
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(c) Mean Delay in FIFO.

Figure 11. Comparisons between Simulation Results of OPNET and
CoMET Models (GW ECU #1).

simulation technique is around 1.5 times faster than execu-
tion in a real-time environment, even under an ordinary PC
environment (Intel Core 2 Duo 2.33GHz); such acceleration
cannot be expected in the case of fine-grained simulation
such as virtual prototyping.

Summarizing the quantitative discussion presented above
on the basis of the experimental results and the qualitative
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(b) Mean Delay in Rx Register
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(c) Mean Delay in FIFO.

Figure 12. Comparisons between Simulation Results of OPNET and
CoMET Models (GW ECU #2).
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(a) Simulation Results of GW ECU #1.
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(b) Simulation Results of GW ECU #2.

Figure 13. End-to-End Delay Estimated by Proposed Technique.

discussion presented in Sects. III and IV, we derive a
comparison between the proposed technique and CoMET-
based simulation, as shown in Table II. The table shows
that each approach has different characteristics, and hence,
different applicable phases. This implies that we can use
both approaches in a collaborative way for different types
of verification, i.e., the proposed technique is used for
design verification, and CoMET-based simulation is used for
implementation verification.



Table II
COMPARISON BETWEEN PROPOSED AND COMET-BASED SIMULATION.

Approaches Proposed CoMET-Based

Coverage Software, hardware,
and network

Software and hardware

Abstraction High Low

Design models (e.g.
Fig. 8)

Source code (software
and hardware)

Accuracy Medium High

Simulation Speed High Medium

Applicable Phase Design Test

Required Literacy C language C language and HDL

System Design

SysML Model

Task

Work 
Product

Hardware 
Design

MARTE Model

Software
 Design

MARTE Model

OPNET Model

Translation

Co-Design Co-Verification

Simulation

Figure 14. Model-Based Development using Proposed OPNET-based
Simulation (Future Work).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an OPNET-based simulation
of real-time distributed automotive systems. The proposed
technique can deal with the three important components
of automotive systems, i.e., hardware and software within
ECUs, and networks among ECUs. Thus, it enables a holistic
simulation of automotive systems. Moreover, the end-to-end
analysis is a new feature enabled by the proposed holistic
simulation, which was infeasible when we used CoMET-
based simulation. The proposed technique enables design
verification; hence, the efficiency of system development can
be potentially enhanced by using this technique. In addition,
the proposed technique depends on a single commercial tool;
hence, it has low running costs and it can be immediately
deployed for real-world development.

In the future, it will be necessary to ensure that the
proposed technique conforms with standardized modeling
methods, e.g., SysML, MARTE, etc. Once the alignment
with these standards is established, model-based develop-
ment in close collaboration with the proposed simulation
technique should be possible, as shown in Fig.14.
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Abstract—Mixed time/event-triggered (TT/ET) distributed
control systems are complex systems which have emerged in
many cyber-physical domains but have been difficult to evaluate
at early design stages. In order to reveal design flaws as early
as possible, this paper proposes a simulation framework based
on an executable virtual platform model in SystemC/TLM. The
executable platform is generated using a model-based approach
from a system designed in the Embedded Systems Modeling
Language (ESMoL). The virtual platform consists of three types
of abstract models, the RTOS model, the communication system
model, and the hardware model, to capture different behaviors of
the mixed TT/ET distributed control systems. Preliminary results
from a case study using a Quadrotor flight control system are
used to illustrate the approach.

Keywords-Mixed Time/Event-Triggered Distributed Control
Systems; Virtual Platform; SystemC/TLM; Graphical Models;

I. INTRODUCTION

Nowadays, most complex cyber-physical systems (CPSs),
such as automotive vehicles, air planes and trains, use dis-
tributed control systems, in which several ECUs are connected
by network(s)/bus(es) [22]. Typically, these control systems
are hard real-time systems. Traditionally, these control sys-
tems are composed of event-triggered (ET) tasks and use
event-triggered communication systems, such as CAN bus.
As time-triggered architectures (TTA) offer advantages such
as determinism, predictability, and composability [9], many
new systems tend to be built using TTA. However, many
sporadic events make the designs not fit into the strict periodic
framework [13]. These CPS control systems often consist
of both TT and ET tasks and use a mixed communication
protocol (e.g. FlexRay and TTEthernet) to form mixed TT/ET
distributed control systems [17].

When designing mixed TT/ET distributed control systems,
many challenges arise due to a large design space and lack of
tools to explore it. First, the hardware platform needs to be de-
signed including a set of nodes connected by a communication
system. Trade-offs between cost and performance drive the
selection of the appropriate processors. The communication
system bandwidth and topology also need to be considered

in order to meet performance and redundancy requirements.
Then, partitioning tasks into TT or ET needs to be considered.
Moreover, mapping the tasks on the hardware platform is also
important and affects timing [17]. After mapping, the mixed
communication system needs to be configured using proper
parameters. Thus, the space of possible design configurations
is large and early evaluation is necessary to eliminate bad
design decisions which may cause the system to fail to meet
its requirements at a later design stage. However, most existing
work focuses on specifying the control system [23], analyz-
ing the system’s schedulability [18], optimizing partitioning,
mapping and bus cycle [17], and inter-task communication
mechanism [21], but not evaluating the whole system.

For mixed TT/ET distributed control systems, both com-
putation and communication should be captured to enable
evaluation of the whole system with respect to functionality,
timing, and performance. Both computation and communica-
tion concerns are coupled to the application software, system
software and hardware platform. The ability to model, inte-
grate, and simulate all parts together is essential for design
space exploration during early development. A virtual platform
including both hardware and embedded software can be used
as a pivot in this evaluation framework, since it is available
much earlier than the real system [7].

System-Level Design Languages (SLDLs), such as SystemC
and SpecC, can be used to model both hardware platforms
and embedded software. In addition, most SLDLs support the
concept of transaction-level modeling (TLM) which separates
the design of the computation and communication. A TLM
communication structure abstracts away communication de-
tails to speed up simulation while keeping required accuracy.
SystemC has been a de facto SLDL [3]. It also has a TLM
library for modeling memory-mapped buses. SystemC/TLM-
based virtual platforms on system-level can model the hard-
ware behavior with good simulation efficiency and sufficient
timing accuracy at early stages [4].

In order to evaluate a mixed TT/ET system, we pro-
pose a simulation framework based on a virtual platform in
SystemC/TLM and is combined with a model-based design



environment in GME [12]. The virtual platform consists of a
mixed TT/ET computation model and communication model.
For the computation model, an abstract RTOS model and
abstract hardware models such as processor and peripherals
are needed. The abstract RTOS model is built in SystemC
and takes charge of task scheduling, inter-task communication,
synchronization and interrupt handling [5] [11] [24]. The
behaviors of both TT and ET tasks should be captured by
the abstract RTOS model, and abstract hardware models form
the underlying computational platform. For the communication
model, an abstract communication system model which can
capture the behaviors of both TT and ET communication is
needed. Since FlexRay has been widely used in many CPS
domains, it is a good reference for modeling the mixed TT/ET
communication [2]. The abstract communication system model
in this framework is based on FlexRay.

The simulation framework is also integrated with a model-
based design environment in GME called Embedded Systems
Modeling Language (ESMoL) [19]. The mixed TT/ET dis-
tributed control systems in ESMoL can be transformed to
the virtual platform models using automated model transfor-
mations. This integration makes the design and simulation
of the mixed TT/ET systems effective and efficient. As the
framework is still in progress, preliminary results from a case
study using a Quadrotor flight control system are used to
illustrate the approach. The bandwidth of two communication
systems is evaluated for the designed mixed TT/ET system.

There have been efforts to establish simulation frameworks
for design of distributed real-time control systems. In [15],
a framework based on generated virtual execution platform
is proposed, in which VaST tool is used to model a cycle-
accurate hardware platform and µC/OS-II RTOS is ported to
the modeled platform. Although the simulation can be very
accurate, the very low abstraction level makes it not suitable
for early design evaluation. Compared to [15], a framework
named E-TTM is proposed on a very high abstraction level for
the design of TTA-based real-time control systems in [16]. Too
high level of abstraction also impedes the use of the framework
due to inaccuracy. In [14], a UML-based design framework is
proposed. A system is described in UML, and then the UML
model can be converted into SystemC model for simulation.
However, this framework is only for TT applications without
considering mixed TT/ET systems.

Compared to the related efforts, the main contributions of
this proposed framework are: (1) it uses abstract computation
and communication models to establish a universal simulation
framework for mixed TT/ET systems, while the levels of
abstraction are appropriate to keep the simulation efficient and
accurate; (2) the framework is also integrated with a model-
based design tool to improve its usability.

The rest of this paper is organized as follows: Section 2
introduces the virtual platform model in the proposed sim-
ulation framework which consists of three types of models;
Section 3 describes how to transform an ESMoL design
into an executable virtual platform; Section 4 gives a case
study on the design of a Quadrotor flight control system

and uses the simulation framework to evaluate the influence
of the bandwidths of the communication systems; Section 5
concludes this paper and gives future work.

II. VIRTUAL PLATFORM MODEL

Fig. 1. Virtual platform with abstract RTOS model, abstract communication
system model, and abstract hardware model.

The virtual platform, as shown in Fig. 1, consists of three
types of models which are the abstract RTOS model, the ab-
stract hardware model, and the abstract communication system
model. The models are implemented in SystemC by inheriting
from the sc module class in which concurrent behaviors are
modeled by a set of SystemC processes (SC THREAD or
SC METHOD). These three models can be instantiated and
integrated to be an executable model for simulating mixed
TT/ET control systems.

A. RTOS Modeling

On a node of a distributed system, TT and ET tasks which
realize the desired functionalities interact with an RTOS. The
RTOS captures the dynamic behaviors of the tasks.

The abstract RTOS model has three SC THREAD processes,
which are the RTOS service process interacting with TT and
ET tasks, the time-trigger process taking charge of triggering
TT tasks according to a static schedule, and the interrupt
handling process invoking an interrupt service routine (ISR)
to handle the corresponding interrupt. Fig. 2 shows the funda-
mental services supported by the abstract RTOS model.

1) Task Management: In a mixed TT/ET system, tasks
are divided into TT tasks and ET tasks. Time-triggered tasks
are activated according to a predefined schedule. When a
node’s synchronized local clock reaches a predefined time
instant, the corresponding TT task will be put into the ready
queue. TT tasks can be non-preemptive or preemptive. ET
tasks are activated dynamically depending on the occurrence
of associated events. ET tasks can also be non-preemptive or
preemptive.

Each task in the abstract RTOS model corresponds to
a SystemC SC THREAD process. In order to serialize the
tasks and control their execution, each task pends on its own
sc event object. The RTOS scheduler controls the execution
by notifying the task’s sc event object. A task’s execution



Fig. 2. Abstract RTOS model with supported primitives

information is stored in its Task Control Block (TCB). Since
in SystemC the execution between two wait() statements is
in zero simulation time, we need to advance time and model
execution of tasks by using wait() statements. The execution
time of a section of code is modeled by inserting timing
annotations into the task. The annotation can be coarse-grained
on the task level or fined-grained on the basic block or
statement level.

There are a set of primitives provided by the RTOS model
to manage a task’s creation, termination, resumption and sus-
pension. When created, each task needs a task name, a worst
case execution time (WCET), and a deadline. In addition,
each TT task also needs a predefined schedule passed as a
parameter, and each event-triggered task needs a user-defined
priority and/or a period depending on the scheduling policy.

2) Scheduling: The scheduler is the heart of the RTOS,
which allocates CPU time to a selected task from the ready
queue. The scheduler’s behavior depends on a specific schedul-
ing algorithm. In the abstract RTOS model, the scheduler has
three common priority-based scheduling policies which are
rate monotonic (RM), deadline monotonic (DM), or earliest
deadline first (EDF). Other scheduling algorithms can also be
easily added into the RTOS model. The scheduler’s timing
properties are RTOS- and hardware platform-specific. Basi-
cally, there are two main parameters of its timing properties:
scheduling overhead and context switching overhead. There
is some research work on how to accurately acquire these
parameters [6] [8], which is not the focus of this paper, so we
assume the parameters are already available for a particular
system.

The task state transitions are modeled by two finite state
machines as shown in Fig. 3, one for TT tasks and the
other one for ET tasks. The Created state is for any new
task. Depending on the task type (TT or ET), it transitions

to the corresponding state. A TT task enters the Idle state,
and an ET task enters the Ready state. A TT task enters the
Ready state statically according to an a priori schedule table,
while an ET task enters the Ready state dynamically when the
event happens. There is only one ready queue, which contains
both time-triggered and event-triggered “ready-to-run” tasks.
The scheduler schedules this ready queue using the assigned
scheduling policy. Only one task can be in the Running state
at a time which is chosen by the scheduler.

Fig. 3. Task state transitions of TT/ET tasks.

3) Inter-Task Communication: In a multi-tasking RTOS,
tasks need to communicate with others synchronously or
asynchronously using inter-task communication mechanisms.
In the abstract RTOS model, inter-task communication on one
node can be achieved by shared memory or message queue,
and inter-task communication between different nodes can be
achieved by message-passing. Shared memory is used between
TT tasks, since it can be accessed without race-conditions.
Semaphore synchronization is used by ET tasks to serialize
access to shared memory and maintain task dependencies.

Communication between TT and ET tasks on a single node
occurs through message queue. An agent is associated with a
TT task in the message queue as a state message keeper. If
the message queue is empty, when an ET task tries to poll a
message from it, it will be blocked on it; whereas, for a TT
task, the agent will give the task the message in the queue if
it is available, and then update its state message as the latest
dequeued message or give the task the state message if the
queue is empty. So when a TT task accesses the message
queue, it will never be blocked even if there is no message
available in the queue.

Communication between two tasks on different nodes are
through message passing. Two types of messages are sup-
ported in the model, one is TT and the other one is ET. TT
messages are transmitted in the predefined static time slots of a
communication cycle. ET messages are transmitted according
to the combination of their priorities and the dynamic slots.

4) Interrupt Handling: SystemC has some disadvantages
for RTOS modeling, which can be summarized as non-
interruptible wait-for-delay time advance and non-preemptive
simulation processes. When an interrupt happens, it requires
the real-time system to react and handle it in a timely manner.
Modeling an accurate interrupt handling mechanism plays an
important role in RTOS modeling. We adopt the method from



[24] which makes task use wait-for-event other than wait-for-
delay to advance its execution time. A system call of the RTOS
model taking execution time as its argument makes the task
wait on a sc event object which will be notified after the
given execution time elapses if no interrupt happens. When
an interrupt happens and its corresponding ISR preempts the
execution of the task, the notification of the sc event object
will be canceled and a new notification time will be calculated
according to how much time the preemption took and how
much execution time already passed.

B. Communication System Modeling

In a distributed control system, the timing behavior of the
communication system has an important impact on system
performance. There are a few communication protocols that
provide predictable message delays [20]. The abstract commu-
nication system model in this framework is based on FlexRay
protocol [2], which can handle both time-triggered and event-
triggered communication. The data granularity of the model
is at the message-level, since we only need to consider
message delay rather than the detailed timing of underlying
operations for evaluation of the system. The behavior of the
communication system is modeled by a state chart as shown
in Fig. 4. The abstract communication system model takes
advantage of the global time in the SystemC simulation kernel,
and uses it as its synchronized time base.

The communication controller model realizes the behavioral
model of the communication system and takes charge of
transmitting and receiving messages through the underlying
medium. Its implementation class is also derived from the
sc module class of SystemC. It also utilizes the TLM-2.0
library in SystemC to realize the underlying transmission.
The TLM-2.0 library is mainly for modeling memory-mapped
buses, so we change some of its semantics to model our
communication system. The controller acts as both an initiator
and a target for TT/ET bus transactions, and the TT/ET bus
is an interconnect component. The controller also acts as a
target for memory-mapped bus transactions within a node.
The write command of a transaction means to transmit the
message included in the generic payload. For simplicity, only
the blocking transport interface (b transport() method) is used.

Bus communication is organized in cycles. Each cycle
consists of three segments including a time-triggered static
segment, an event-triggered dynamic segment and a waiting
segment. The time-triggered part is based on a time-division
multiple-access (TDMA) medium access protocol (MAC), and
the event-triggered part is based on flexible TDMA as in
FlexRay and Byteflight [2] [1]. For time-triggered communica-
tion, a predefined schedule is also needed and passed through
a configuration file.

In the static segment superstate, if the current time slot is
scheduled to receive a message from the bus, the communi-
cation controller goes into RECV state; if scheduled to send
a message, it transitions to the SEND state to start a message
transmission. Otherwise, it will stay in the IDLE state. When a
static time slot is elapsed, the model checks whether the time-

Fig. 4. Behavior of the abstract communication system model based on
FlexRay protocol.

triggered communication part is finished by comparing if the
slot counter has reached the allocated number of static slots.
The schedule guarantees there are no transmission contentions,
so dynamic arbitration is not necessary.

The dynamic segment superstate takes charge of event-
triggered communication. The segment is divided into a set of
minislots. A frame ID variable is updated synchronously by
every node in the system. In order to solve the contentions be-
tween sending nodes, the rights of transmission are ordered by
the frame ID assigned to each node. Different from FlexRay,
in this model the dynamic messages are put in a single queue.
The queue is sorted by the priorities assigned to the messages
associated with the task’s priorities, and the messages with the
same priority are ordered by FIFO. Each dynamic time slot can
have varying number of minislots. The length of a dynamic
time slot depends on the size of the transmitted message. When
the controller transmits the data in its queue, the controller
needs to check whether this is allowed. First, it checks if it
has the right to use the current frame ID by comparing with
its assigned frame IDs. Then, it searches in the queue for
the message with the highest priority which can fit into the
remaining dynamic segment time. If there is such a message,
the controller sends it on the bus by calling b transport()
method; otherwise, the controller defers sending and will try
in the next cycle. When the dynamic communication phase is
finished, the controller enters the WAIT state. In FlexRay, this
time is mainly for clock synchronization. Since we use the
global time in the SystemC simulation kernel, we do not need
to do clock synchronization and we use this state to model a
realistic timing behavior.



C. Hardware Modeling

The abstract RTOS model is running on an abstract proces-
sor model which communicates with other peripherals through
a memory-mapped bus modeled in TLM-2.0, as shown in Fig.
1. Peripherals are divided into communication controllers and
other I/O devices. I/O devices are used to model sensors and
actuators that interact with the plant dynamics. Each I/O device
has a corresponding ISR SC THREAD process in the RTOS
registered when calling RegisterDevice(). In the current state
of the framework, the processor is modeled in a simplified
way. The abstract RTOS model interacts with the processor
model by: (1) the tasks invoke ReadMsg(), WriteTTMsg(), and
WriteETMsg() primitives to make the processor initiate bus
transactions with the communication controller; (2) the pro-
cessor signals the RTOS model that a registered I/O device’s
ISR needs to be activated; (3) the ISR signals the processor to
start bus transactions with the corresponding I/O devices. The
processor model has a sc port object which is a multi-port
connected by each I/O device’s interrupt request (IRQ) wire.

Each I/O device is derived from the sc module class and
has a SC THREAD process to control its IRQ behavior. The
behavior of the IRQ can be modeled in two modes, asyn-
chronously periodic and sporadic. For example, an UART’s
IRQ can be modeled as sporadic if the interval between two
interrupts has a minimum period, or it can be modeled as
asynchronously periodic if the interrupts have a fixed period
but are not synchronized with the clock of the processor.
When an IRQ occurs, the I/O device will trigger the IRQ
wire connected to the processor and corresponding ISR will
become ready to handle the IRQ. The ISR will be put into
the ready queue first usually with the highest priority, then it
would preempt other tasks and run immediately. The order of
interrupt handling is based on the IRQ priorities if there are
more than one IRQs at the same time. When an ISR finishes,
it will check if there is any ET task pending on it and put
the corresponding blocked task into the ready queue. Each
I/O device also has a SC THREAD process to interact with
the plant model. If the device is a sensor, a sense process will
pull sensor data from the plant and wait for a read transaction.
If the device is an actuator, an actuate process will wait for a
write transaction and send the data to the plant.

III. MODEL-BASED APPROACH

The front end of this simulation framework is a single
multi-aspect embedded software design environment called
Embedded Systems Modeling Language (ESMoL) [19]. The
executable simulation model is generated from ESMoL. The
model transformation process is shown in Fig. 5. Two inter-
preters are used to realize the model transformations.

An ESMoL model consists of different models used to cap-
ture different aspects of the designed system. The design entry
of an ESMoL model is to specify the control system’s func-
tionality in the Simulink environment. The Simulink model
will be imported into the ESMoL automatically to become the
functional specification for instances of software components.

A logical software architecture model is established to cap-
ture data dependencies between software component instances
independent of their distribution over different processors. A
hardware platform model is defined hierarchically as hardware
units with ports for interconnections. By mapping software
components to processing nodes and data messages to com-
munication ports, a deployment model is created. By attaching
timing parameter blocks to components and messages, a timing
model is established. The whole design process is described
in detail in [19].

The interpreter in stage 1 transforms the ESMoL model to
an equivalent model in an intermediate language called ES-
MoL Abstract. The model in this intermediate language is flat-
tened and the relationships implied by structures in ESMoL are
represented by explicit relation objects in ESMoL Abstract.
This translation is similar to the way a compiler translates
concrete syntax first to an abstract tree, and then to interme-
diate semantic representations suitable for optimization. The
interpreter in stage 2 uses the UDM model navigation API to
generate the simulation model according to the corresponding
templates. The generation of the simulation model consists of
three parts.

Fig. 5. ESMoL model and its corresponding SystemC model via model
transformation using two interpreters.

The first part is to instantiate the hardware and software
models according to the templates. Each processor, I/O de-
vice, communication controller, bus, and RTOS in the ES-
MoL Abstract model is instantiated in the sc main() function.
All the instances belonging to the same node are assembled
by binding the sockets or ports. The communication controller
in each node is bound to the TT/ET bus instance. Each I/O
device is registered into the RTOS by calling RegisterDevice()



method, which will register an ISR SC THREAD process
with its timing and type information (sensor/actuator) passed
through the ESMoL model. ISR process pends on its own
sc event object, and has the address information of the device.
Each task has a corresponding SC THREAD process. The
process pends on its own sc event object which will be notified
if the process is chosen to run by the scheduler. A task is
time-triggered if its ExecInfo object in the ESMoL model
is a TTExecInfo object, whereas it is event-triggered if its
ExecInfo object is a AsyncPeriodicExecInfo or a SporadicEx-
ecInfo object. A TT task only waits on its own sc event
object. An ET task waits on the corresponding event by calling
either WaitOnDevice, WaitOnSemaphore or WaitOnMsgQueue
primitive. When the event occurs, the ET task goes to the
ready queue. All the tasks are registered into the RTOS
instances by calling either CreateTTTask() (time-triggered) or
CreateETTask() (event-triggered) primitive. If the task is a
sender of a message, it invokes WriteTTMsg() system call to
send a TT message, or WriteETMsg() if the message is an ET
one. Shared variables are used for inter-task communication of
the same task type (TT/ET). Communication channel between
a TT task and an ET task on the same node in the ESMoL
model is translated to a message queue. The plant model also
has a SC THREAD process for time stepping its dynamics
function and is instantiated in the sc main() function. This
process also exchanges data with sensors/actuators via shared
memory.

The second part generates the configuration files for the
model instances according to the specified attributes in the
ESMoL model, such as the static schedule tables for RTOSes
and the segment configurations for communication controllers.
The third part is to generate the functional C code for the tasks
and the plant dynamics using Real-Time Workshop (RTW),
and integrate the functional code with the generated model in
the first part. The generated codes can be easily wrapped into
the corresponding SC THREAD processes of the tasks and the
plant model.

IV. CASE STUDY

In this section, we employ the simulation framework for the
design of a Quadrotor flight control system and present some
preliminary results to illustrate the approach.

The controller for the Quadrotor is designed using two linear
proportional derivative (PD) controllers, an inner loop and an
outer loop, as shown in Fig. 6. The outer loop controller is

Fig. 6. Two PD controllers in the Quadrotor control system.

a “slow” PD inertial controller and the inner loop is a “fast”

PD attitude controller. More details are described in [10]. The
corresponding Simulink model (shown in Fig. 7) is built which
has four blocks (ReferenceHandler, DataHandler, InnerLoop
and OuterLoop). After validation of the Simulink model, the
model is automatically imported into ESMoL.

Fig. 7. Simulink model of the Quadrotor control system.

Four ESMoL models are established to capture different
aspects of the design. As shown in Fig. 8, the logical software
architecture in the ESMoL model gives the data dependencies
of the tasks in the Quadrotor control system. Fig. 9 shows
the platform of the Quadrotor which has two nodes, one is
based on PXA255 processor and the other one is based on
ATmega128, and they are connected by a TT/ET bus. Each
node has its I/O devices to interact with the outside plant.
For task deployment as shown in Fig. 10, two tasks (Ref-
erenceHandler and OuterLoop) are assigned to the PXA255
node, and the other two tasks (DataHandler and InnerLoop)
are assigned to the ATmega128 node. A timing model (Fig.
11) is also established by attaching timing parameter blocks
to components and messages. As shown in Fig. 11, the
ReferenceHandler task and DataHandler task are assigned
as event-triggered tasks, and the other two tasks are time-
triggered tasks.

In this design, we constrain the design space by using
the above hardware platform, task type (TT/ET) assignment,
and task deployment, and only focus on the influence of the
bandwidth of the TT/ET bus.

Fig. 8. Software data dependencies of the Quadrotor control system.

The sampling period of the system is 20ms. For tasks on
each node, their WCETs are measured empirically. On the
PXA255 processor, ReferenceHandler needs 50µs with rela-
tive deadline 5ms, and OuterLoop needs 1.6ms with relative
deadline 2ms. On the ATmega128 processor, DataHandler
needs 200µs with relative deadline 4ms, and InnerLoop needs
600µs with relative deadline 1ms. The ISR of the Ethernet on



Fig. 9. Hardware platform of the Quadrotor control system.

Fig. 10. Task deployment of the Quadrotor control system.

PXA255 needs 5µs, and the ISR of the UART on ATmega128
needs 2µs. In each cycle, OuterLoop is time-triggered at 12ms
and sends a message to InnerLoop with the attitude control
data, InnerLoop is time-triggered at 10ms, and DataHandler
sends a messge to OuterLoop with the position data.

Since there are a few tasks contending for computation
resources, the scheduling algorithm will not make a big
difference for control performance. On PXA255 processor RM
is used and on ATmega128 processor EDF is used. However,
the Quadrotor control system is sensitive to communication
delays, which will make us choose the appropriate com-
munication system. Suppose there are only two options for
the communication system, one has the maximum bandwidth
of 400Kbit/s but cheaper and the other has the maximum
bandwidth of 2Mbit/s but more expensive.

First, the 400Kbit/s bandwidth TT/ET bus is tried and
the static time slot is set as 2ms, since the largest message
(60 bytes) needs 1.2ms for transmission. PXA255 uses the
seventh static slot to transmit the attitude control data and
ATmega128 uses the sixth static slot to transmit the position
data. The simulated control performance is shown in Fig. 12.
The left figure shows the simulated trajectory of the Quadrotor
compared to its reference, in which the solid lines give the
trajectory and the dotted lines give the reference: red lines
are positions along X-axis, black lines are positions along Y-
axis, and blue lines are height positions, respectively. The right
figure shows the error between the simulated trajectory and
reference. The timing behaviors of the tasks is shown in Fig.
13. In the timing diagram, each red dotted line represents the
deadline of the task. From the timing diagram we can see every
task meets its deadline. However, the control performance
begins more and more unstable as time passes.

Fig. 11. Timing model of the Quadrotor control system.

Fig. 12. Control performance with bus bandwidth of 400Kbit/s.

The second case uses the 2Mbit/s bandwidth TT/ET bus
and the static slot is set as 1ms, as the largest message
(60 bytes) needs 240µs for transmission. PXA255 uses the
fourteenth static slot to transmit the attitude control data
and ATmega128 uses the eleventh static slot to transmit the
position data. Fig. 15 depicts the timing behaviors of the
tasks which are similar to the timing diagram in Fig. 13 due
to the modified communication configuration which does not
affect the computation part. The message from DataHandler
to OuterLoop is transmitted during the eleventh static slot,
which can be used as the latest state message by OuterLoop.
The improvement of the bandwidth increases the cost of the
system but stabilizes the control performance which is shown
in Fig. 14.

V. CONCLUSION

In this paper, a simulation framework for design of mixed
TT/ET distributed control system is introduced. The frame-
work consists of a virtual platform model in SystemC/TLM
and a model transformation approach to generate the virtual
platform for a designed system. The virtual platform model
has three different models, which are abstract RTOS model,
abstract communication system model, and abstract hardware
model. The RTOS model is used to capture the dynamic
behaviors of TT/ET tasks, and the communication system



Fig. 13. Timing diagram of the control system with bus bandwidth of
400Kbit/s.

Fig. 14. Control performance with bus bandwidth of 2Mbit/s.

model is used to capture the behaviors of TT/ET communi-
cation. The hardware model integrates the RTOS model and
the communication system model together. Two model trans-
formations translate the ESMoL model to the corresponding
virtual platform model for simulation. We present a case study
on a Quadrotor flight control using this framework, and give
the simulation results for different bandwidths of the TT/ET
buses.

The future work includes introducing a more realistic
communication system model with startup, restart, and clock
synchronization services and more realistic hardware models
that give more realistic timing behaviors.
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An Analytical Model of the CAN Bus for Online Schedulability Test

Zhenwu Shi and Fumin Zhang, Georgia Institute of Technology

Abstract—Controller area network (CAN) is a priority-
based bus that supports real-time communication. Existing
schedulability analysis for the CAN bus is peformed at the
design stage, by assuming that all message information is
known in advance. However, in pratice, the CAN bus may
run in a dynamic environment, where complete specifications
may not be available at the design stage and operational
requirements may change at system run-time. In this paper,
we develop an analytical model that describes the dynamics of
message transmission on the CAN bus. Based on this analytical
timing model, we then propose an online test that effectively
checks the schedulability of the CAN bus, in the presence of
online adjustments of message streams. Simulations show that
the online test can accurately report the loss of scheduability
on the CAN bus.

I. INTRODUCTION

Controller area network (CAN bus) is a serial bus de-
signed for industrial environments. It was first deployed by
the automobile industry in the 1980s for decreasing wiring
hardness and complexity among electronic control units in
vehicles. During the past thirty years, other industries have
gradually adopted the CAN bus and applied it to a variety
of areas such as robotics, aircraft, medical equipment, and
industrial automation. The CAN bus has an important feature
of supporting real-time communication. Each message on
the CAN bus is assigned a priority and the transmission
of messages follows a deterministic order decided by their
prorities [1]. This feature makes the CAN bus particularly
suitable for systems with stringent time constraints on the
communication.

Related Works The application of the CAN bus requires
scheduling analysis to check if all messages can meet their
deadlines. The scheduling analysis of the CAN bus has
been extensively studied. In 1994, Tindell et al. proposed
a basic CAN schedulability analysis [2]–[4]. This result was
later recognized by Volvo Car Corporation and successfully
used as the theoretical foundation for commercial CAN
schedulability analysis tools [5]. However, the basic CAN
schedulability analysis in [2]–[4] is based on ideal assump-
tions of the CAN bus that may not be supported in real
applications. Since then, a lot of research has been conducted
to improve the basic CAN schedulability analysis. [6]–[9]
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studied the effect of hardware limitations on the scheduling
analysis of the CAN bus. [10]–[12] extended the basic CAN
schedulability analysis to account for the transmission errors.
[13], [14] studied the schedulability issues of the CAN bus
when messages have offsets. [15] proposed a probalistic
analysis of the response time of messages on the CAN bus.
In 2007, Davis et al. revisted the basic CAN schedulability
analysis and corrected some significant flaws [16].

Motivation. Existing schedulability analysis for the CAN
bus is performed at the design stage, by assuming that all of
message information is known in advance. This assumption
used to be valid in the earlier design of embedded systems,
which deliberately abstracted away properties of the physical
world. However, this is not always be the case. Recent years
have witnessed a growing trend for developing embedded
systems that are closely integrated with the physical world.
For example, Cyber Physical Systems research community
has emerged, with the aim of underpinning the integration
of cyber and physical elements across all application sectors
[17], [18]. However, one of the major design challenges
brought by this trend is that the embedded system needs
to operate in a dynamic environment, where complete
specifications are not possible at the design stage and/or
operational requirements may change at system runtime
[19]. Particularly concerning the CAN bus in embedded
systems, the design challenge means that the CAN bus may
frequently experience online adjustment of communication
requirements, such as addition, removal, and change of
message streams. To guarantee normal operation of the CAN
bus in a dynamic environment, we need an online test that
can check the schedulability of the CAN bus during system
runtime.

Contributation. In this paper, we analytically model the
dynamics of message transmission on the CAN bus through
a non-block, deterministic hybrid automaton. Then, based
on this analytical timing model, we propose an online test
that re-evaluates the schedulability of the CAN bus. Our
contribution is two manifold: (1) an analytical model of the
CAN bus; and (2) an online schedulability test, which is
necessary and sufficient, hence gives the least conservative
schedulability test.

Organization. The remainder of this paper is organized
as follows. Section II presents an overview of the CAN
protocol. Section III formulates the problem. Section IV uses
a hybrid automaton to analytically describe the dynamics of
scheduling messages on the CAN bus. Section V proposed



an online schedulability test. Section VI uses simulations to
show the effectiveness of our online schedulability test.

II. CONTROLLER AREA NETWORK

This section overviews fundamentals of the CAN proto-
col, with emphasis on message routing and bus arbitration,
which are considered as key features of the CAN protocol.
Other part of the CAN protocol can be found in technique
documents avaialable online.

A. Message Routing

The CAN protocol defines a standard data message that
encapsulates information transmitted between a source node
and one or more receivers. As shown in Fig. 1, the data
message is composed of seven fields: an SOF field, which
represents the start of the message; an identifier field, which
is a unique number assigned to the message; a control field,
which indicates the length of the data field; a data field,
which contains the information encapsulated in the message;
a CRC field, which checks the integerity of the message;
an ACK field, which acknowledges the reception of the
message; and an EOF field, which represents the end of
the message.

SOF Identifier Control . CRC ACK EOFCONTROLData

Figure 1. A standard message frame in CAN

The CAN protocol is a content-based protocol rather than
an address-based protocol such as TCP [20]. Unlike the
latter, which assigns each message an explicit destination
address, the CAN protocol assigns each message a unique
identifier. Based on the identifier, the CAN protocol routes
messages as follows: When a node attempts to transmit a
message, it broadcasts the message on the CAN bus; and
each individual node receives the message from the CAN bus
and, based on the identifer, decides whether or not to process
the message. Such content-based protocol has two major
advantages. First, a message can be destined for any number
of nodes simultaneously, which increases the utilization of
the CAN bus. Second, additional nodes can be added to the
existing CAN bus without the necessity to reprogram all
other nodes to recognize this addition, which increases the
flexibility of the CAN bus.

B. Bus Arbitration

The CAN bus is a serial bus which only allows one node
to transmit a message at a time. If two or more nodes attempt
to transmit messages at the same time, collisions will happen
on the CAN bus. The CAN protocol resolve the collisions
through an arbitration scheme known as CSMA/BA (Carrier
Sense Multiple Access with Bitwise Arbitration), which uses
the identifier of each message as its priority and then based
on priorties decides which message may be granted access
to the CAN bus.

Using identifiers as priorities is enabled by the wired-
AND property of the CAN bus: if multiple nodes are
transmitting messages at the same time and one of the nodes
transmits a logic bit “0”, the value of the bus will be “0”;
and only if all of the nodes transmit a logic bit ”1” will the
value of the bus be “1”. Based on this property, CSMA/BA
performs arbitration as follows: (1) the arbitration starts
from the first bit in the identifier field and ends at the
last bit in the identifier field; (2) each node transmits the
identifier of a message while monitoring the resulting bus
value; and (3) if a node’s transmitted bit differs from the
value of the bus, the node detects a collision and aborts its
message transmission; if a node’s transmitted bit is same
as the value of the bus, the node continues its message
transmission. Since each message has a unique identifier,
a node transmitting the last bit of the identifier without
detecting a collision must be transmitting the highest priority
message, and can continue transmitting the remaing part of
the message. According to the above arbitration process,
we can see that: (1) The logic bit “0” can always win
arbitration over the logic bit ”1”, therefore the message with
a lower value in the identifier field has a higher priority; (2)
the highest-priority message wins arbitration without being
disturbed since the transmission of lower priority messages
will automatically back off and wait; and (3) the allocation
of priorities to messages in identifiers makes the CAN bus
particularly suitable for real-time communication.

III. PROBLEM FORMULATION

We consider a system based on the CAN bus, as illustrated
in Figure 2. The CAN bus is shared by multiple nodes. Each
node on the CAN bus consists of three parts, where appli-
cations generate and utilize messages, host processors carry
out user-defined functions, and CAN controllers implement
the basic CAN protocol. Each node on the CAN bus may
transmit multiple messages to other nodes.

CAN BUS

CAN Controller

Host Processor

Application

CAN Controller

Host Processor

Application

Figure 2. An example of the CAN bus

In this paper, we investigate the problem of operating the
CAN bus in a dynamic environment, where communication
requirement may frequently change at system run-time, such
as on-line addition, removal, and change of message streams.



The online adjustment of message streams may lead to the
unschedulability of the CAN bus. Thus, it is necessary to
introduce a new way to re-evaluate the schedulability of the
CAN bus at system run-time as follows:

Definition 3.1: An online schedulability test over a time
interval [ta, tb] checks if all message instances are able to
meet their deadlines within [ta, tb].
As the starting time increases, the time interval [ta, tb] will
slide forward. The length of the interval tb − ta depends
on how much into the future we want to perform the
schedulability test. All mathematical tools developed in this
paper are centered around the online schedulability test
within the time interval [ta, tb].

A. System Configuration

There are many different ways of desigining the architec-
ture of the CAN bus. Each design may lead to a different
model. In this paper, we assume that the CAN bus in Figure
2 satisfies the following conditions

1) The CAN bus is reliable such that no error exists in
the transmission;

2) At each node, among all messages that are ready for
transmission, the message with the highest priority
will be always transmitted first.

The above conditions are conventional assumptions that have
been widely used in the research community of the CAN
bus. As a first step towards the analytical modeling of the
CAN bus, we rely on them for our derivation. While the
above conditions may not be satisfied in all application
scenarios, we believe that refined modeling can be carried
out under the same framework .

Moreover, we configure the CAN bus such that each
node will automatically drop off transmission requests of
messages that cannot meet their deadlines.

B. Model and Notations

We describe a system model for the CAN bus and several
notations that will be used in the rest of the paper.

Consider a set of independent messages {τ1, · · · , τN}
transmitting on the CAN bus within the time interval
[ta, tb]. Each message τn is characterized by a tuple
{akn, Ck

n, T
k
n , E

k
n, P

k
n} defined as follows:

• akn: the release time of the the k -th instance of τn;
• Ck

n: the transmission time of the k -th instance of τn;
• T k

n : the inter-release time, i.e. T k
n = ak+1

n − akn;
• Ek

n: the relative deadline of the k -th instance of τn;
• P k

n : the identifier of the k -th instance of τn;
Note that the characteristics of τn is defined at the instance
level. Such definition allows each instance of τn to have dif-
ferent characteristics, which makes our model applicable to
not only periodic messages but also non-periodic messages.

Remark 3.2: Since the CAN bus operates in a environ-
ment where the communication requirement may frequently
change, the set of messages {τ1, · · · , τN} may dynamically
adjust at runtime.

IV. AN ANALYTICAL TIMING MODEL FOR SCHEDULING
ON THE CAN BUS

In last section, we have established necessary notations to
describe a set of messages on the CAN bus. In this section,
we will develop an analytical timing model that describes
the dynamics of scheduling messages on the CAN bus.

A. State Variables

To describe how message {τ1, · · · , τN} are scheduled on
the CAN bus from a dynamic system point of view, we
introduce a state vector Z(t) = [D(t), R(t), O(t)].

Definition 4.1: The first component D(t) is defined as a
vector D(t) = [d1(t), · · · , dN (t)], where dn(t), for n =
1, 2, · · · , N , denotes how long after t the next instance of
τn will be released.

Definition 4.2: The second component R(t) is defined as
a vector R(t) = [r1(t), ..., rN (t)], where rn(t), for n =
1, 2, ..., N , denotes the remaining transmission time of the
current instance of τn after time t.

Definition 4.3: The third component O(t) is defined as
a vector O(t) = [o1(t), ..., oN (t)], where on(t), for n =
1, 2, ..., N , denotes how much time has elapsed before the
current instance of τn finishes transmission.

With the state vector well defined, we can study the
dynamics of scheduling {τ1, · · · , τN} on the CAN bus
through the evolution of Z(t).

B. Evolution of State Vector

The state vector Z(t) evolve continuously most of the
time, except when two “special” events happen. One special
event is the arrival of a new instance. When this event
happens, the value of Z(t) is reset to the characteristics of
the new instance. The other special event is that a message
finishes transmission on the CAN bus and another message
starts transmission. When this event happens, the evolution
dynamics of Z(t) switches discontinuously. Since the state
vector Z(t) exhibits both continuous and discrete dynamic
behaviors, the evolution of Z(t) can be described by a hybrid
automaton defined as follows.

Definition 4.4: A hybrid automaton that describes the
dynamics of scheduling {τ1, · · · , τN} is a collection H =
{Q,Z, F,Dom,Edge,Guard,Reset} where

• Q = {q0, q1, · · · , qN} is a set of modes, where the
mode q0 indicates that no message is being transmitted
on the CAN bus and the mode qi (1 ≤ i ≤ N ) indicates
that τi is being transmitted on the CAN bus;



• Z(t) = [D(t), R(t), O(t)] ∈ R3N is a continuous state
vector as defined above;

• F : Q× Z → R3N is the flow map. For each qi ∈ Q,
F (qi, Z) describes the continuous evolution of Z in the
mode qi;

• Dom : Q → 2Z is the domain of modes. For each
qi ∈ Q, Dom(qi) identifies a set of Z that evolves
continuously in the mode qi;

• Edge : Edge ⊆ Q×Q is a set of edges. Each (qi, qj) ∈
Edge indicates that a discrete transition from the mode
qi to the mode qj is possible;

• Guard : Edge → 2Z is the jump condition. For each
(qi, qj) ∈ Edge, Guard(qi, qj) identifies a set of Z that
can trigger a discrete transition from the mode qi to the
mode qj ;

• Reset : Edge × Z → 2Z is the reset map. For each
(qi, qj) ∈ Edge, Reset(qi, qj , Z) describes the value to
which Z is reset during a discrete transition from the
mode qi to the mode qj ;

Figure 3 demonstrates a directed graph representation of
the hybrid automaton H when two independent messages
{τ1, τ2} are being transmitted on the CAN bus. The graph-
ical representation of the H with other values of N can be
easily constructed using the same methodology. As shown
in Figure 3, the vertices represent modes and the arrows
represent edges. Within each vertex the flow map and
the domain set are indicated. Along each edge the jump
condition and the reset map are shown.

In the following part of this section, we will derive the
expressions of F , Dom, Edge, Guard and Reset, respec-
tively.

1) Flow Map: We discuss the continuous evolution of
Z(t) in any mode qi ∈ Q. Since Z(t) consists of three
components as Z(t) = [D(t), R(t), O(t)], we will discuss
the continuous evolution of each component respectively. We
use ∆t > 0 to denote an arbitrarily small change in time.

First, we study the continuous evolution of D(t) in the
mode qi. Consider an element dn(t) ∈ D(t). According
to Definition 4.1, we know that dn(t) will continuously
decrease within [t, t+ ∆t], i.e.

dn(t+ ∆t) = dn(t)−∆t (1)

which implies the continuous evolution of dn(t) as

ḋn(t) = lim
∆t→0

dn(t+ ∆t)− dn(t)

∆t
= −1 (2)

Therefore, we have the continuous evolution of Q(t) in the
mode qi as

Ḋ(t) = [−1, · · · ,−1]
T (3)

q0

),( 0 ZqFZ =

·

),( 1 ZqFZ =
·

)Dom( 1qZ Î

q1 q2

),(Guard 11 qqZ Î ),,(Reset: 1 ZqqZ 1=

)(Dom 0qZ Î

),( 2 ZqFZ =
·

)Dom( 2qZ Î

),(Guard 22 qqZ Î ),,(Reset: 22 ZqqZ =

),(Guard 21 qqZ Î

),,(Reset: 2 ZqqZ 1=

),(Guard 12 qqZ Î

),,(Reset: 12 ZqqZ =

),(Guard 01 qqZ Î

),,(Reset: 0 ZqqZ 1=

),(Guard 10 qqZÎ

),,(Reset: 10 ZqqZ =

),(Guard 20 qqZ Î

),,(Reset: 02 ZqqZ =
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),,(Reset: 20 ZqqZ =

),(Guard 00 qqZ Î ),,(Reset: 00 ZqqZ =

Figure 3. Graphical representation of the hybrid automaton H when N =
2

Next, we study the continuous evolution of R(t) in the
mode qi. Consider an element dn(t) ∈ R(t). According
to Definition 4.2, we know that rn(t) will decrease within
[t, t+ ∆t] when τn is being transmitted at time t, and keeps
constant otherwise. Moreover, only τi can be transmitted in
the mode qi, as stated in Definition 4.4. Therefore, we have
that

rn(t+ ∆t) =

{
rn(t)−∆t n = i
rn(t) otherwise

(4)

which implies the continuous evolution of rn(t) as

ṙn(t) =

{
−1 n = i
0 otherwise

(5)

Therefore, we can express the continuous evolution of R(t)
in the mode qi as

Ṙ(t) = [0, · · · ,−1, · · · , 0]
T (6)

where −1 is in the i -th entry of the vector.

Finally, we study the continuous evolution of O(t) in the
mode qi. Consider an element on(t) ∈ O(t). According to
Definition 4.3, we know that the evolution of on(t) depends
on whether the current instance of τn has finished transmis-
sion. If the current instance of τn has finished transmission
before time t, i.e. rn(t) = 0, on(t) will not increase within
[t, t+ ∆t]. On the other hand, if the current instance of τn
has not finished transmission before t, i.e. rn(t) > 0, on(t)
will increase within [t, t + ∆t]. By defining a function sgn
such that sgn(x) = 1 when x > 0, sgn(x) = 0 when x = 0,



and sgn(x) = 1 when x < 0, we have that

on(t+ ∆t) = on(t) + sgn(rn(t)) ∆t (7)

which implies the continuous evolution of on(t) as

ȯn(t) = lim
∆t→0

on(t+ ∆t)− on(t)

∆t
= sgn(rn(t)) (8)

Therefore, we have the continuous evolution of O(t) in the
mode qi as

Ȯ(t) = [sgn(r1(t)), · · · , sgn(rN (t))]
T (9)

In summary, equation (3), (6) and (9) constitute the contin-
uous evolution of Z(t) in any mode qi ∈ Q.

2) Domain of Modes: For the ease of expression, we
define an auxiliary variable G(t) as follows

Definition 4.5: G(t) is a set of indices of messages, which
are active for transmission at time t.

G(t) =
{
n| rn(t) = Ck

n and on(t) + Ck
n ≤ Ek

n

}
(10)

where k represents the index of the current instance of τn
at time t, rn(t) = Ck

n specifies messages that have not
transmitted yet, and on(t) + Ck

n < Ek
n specifies messages

that can meet their deadlines.
In the mode q0, the state Z will continuously evolve as

long as the following two conditions are both satisfied: no
new instance of {τ1, · · · , τN} is released and no message is
active for transmission on the CAN bus. To meet the first
condition, we have that

min
1≤n≤N

{D(t)} > 0 (11)

where Definition 4.1 is applied. To meet the second condi-
tion, we have that

Card (G(t)) = 0 (12)

where Card(·) is a cardinality function that measures the
number of elements in a set. Therefore, we have the domain
of the mode q0 as

Dom(q0)=

{
Z(t) | min

1≤n≤N
{D(t)}>0 and Card(G(t))=0

}
(13)

In any other mode qi where 1 ≤ i ≤ N , the state Z will
continuously evolve as long as the following two conditions
are both satisfied: no new instance of {τ1, · · · , τN} is
released and τi is being transmitted on the CAN bus. To
meet the first condition, we have that

min
1≤n≤N

{D(t)} > 0 (14)

where Definition 4.1 is applied. To meet the second condi-
tion, we have that

0 < ri(t) ≤ Ck
i (15)

Therefore, we have the domain of the mode qi where 1 ≤
i ≤ N as

Dom(qi)=

{
Z(t)| min

1≤n≤N
{D(t)} > 0 and 0 < ri(t) ≤ Ck

i

}
(16)

3) Edges and Jump Conditions: According to the
definition of Q, we know that the transition between any
two modes is possible. Therefore, we have that

Edge = Q×Q (17)

where an edge (qi, qj) ∈ Edge represents a transition from
the mode qi to the mode qj .

For any edge (qi, qj) ∈ Edge, we discuss the jump
condition Guard(qi, qj). Our discussion on jump conditions
can be classified into four cases according to different edges.

Case 1: an edge where i = j. This transition is triggered
when any message in {τ1, · · · , τN} release a new instance,
i.e.

Guard(qi, qi) = { min
1≤n≤N

{D(t)} = 0} (18)

Case 2: an edge where i 6= j and 1 ≤ i, j ≤ N . This
transition is triggered when τi finishes transmission and τj
starts transmission. Thus, we have

Guard(qi, qj) = {ri(t) = 0 and j = argmin
n∈G(t)

P k
n} (19)

where ri(t) = 0 indicates that τi has finished transmission
on the CAN bus at time t and j = argminn∈G(t)P

k
n

indicates that τj has the highest priority among all messages
that are active for transmission at time t.

Case 3: an edge where 1 ≤ i ≤ N and j = 0. This transition
is triggered when τi finishes transmission and no message
is active for transmission at time t. Thus, we have

Guard(qi, q0) = {ri(t) = 0 and Card (G(t)) = 0} (20)

where ri(t) = 0 indicates that τi has finished transmission
at time t and Card (G(t)) = 0 indicates that no message is
active for transmission at time t.

Case 4: an edge where i = 0 and 1 ≤ j ≤ N . This transition
is triggered when τi starts its transmission after the CAN bus
has been idle for a while.

Guard(q0, qj) = {Card (G(t)) > 0 and j = argmin
n∈G(t)

P k
n}

(21)
where Card (G(t)) > 0 indicates that there are messages
active for transmission on the CAN bus at time t and j =
argminn∈G(t)P

k
n indicates that τj has the highest priority

among all messages that are active for transmission at time
t.



4) Reset Map: We use t+ to denote the time right after
the reset.

We first discuss the reset map for an edge (qi, qj) where
i = j. As discussed in equation (18), this transition happens
when a new instance of {τ1, · · · , τN} is released. Consider
a message τn.

Case 1: if the new instance released at time t is not from
τn, i.e. dn(t) > 0. In this case, the state variables of τn hold
their values during the transition, i.e.

if dn(t) > 0,we have :

dn(t+) = dn(t) rn(t+) = rn(t) on(t+) = on(t)
(22)

Case 2: if the new instance released at time t is from τn,
i.e. dn(t) = 0. In this case, the state variables of τn is reset
to the characteristics of the new instance.

if dn(t) = 0,we have :

dn(t+) = T k+1
n rn(t+) = Ck+1

n on(t+) = 0
(23)

Applying equation (22) and (23) for n = 1, · · · , N , we have
the reset map Reset(qi, qj , Z) where i = j.

Next, we discuss the reset map for an edge (qi, qj), where
i 6= j. During this transition, the state vector Z(t) remains
constant. Thus, Reset(qi, qj , Z) equals to an identity map:

Reset(qi, qj , Z) = Z (24)

V. ONLINE SCHEDULABILITY TEST

In this section, we show how to perform an online
schedulability test of the CAN bus by utilizing the analytical
timing model developed in Section IV.

A. A Necessary and Sufficient Condition for Schedulability

Consider a set of messages {τ1, · · · , τN} being transmit-
ted on the CAN bus within the time interval [ta, tb]. The
online schedulability test over [ta, tb] can be decomposed to
check whether each message is able to meet its deadlines
within [ta, tb]. The CAN bus is schedulable within [ta, tb]
if and only if all messages are schedulable within [ta, tb].
The following theorem states the necessary and sufficient
condition for the schedulability of τn within [ta, tb].

Theorem 5.1: A message τn is schedulable within [ta, tb]
if and only if for all time points t ∈ [ta, tb] such that dn(t) =
0, we have that rn(t) = 0.

Proof: According to Definition 4.1, we know that
dn(t) = 0 implies that an new instance of τn is released at
time t. At this time point, the state variables of τn represent
the final status of the old instance. Hence, the old instance
of τn can meet its deadline if and only if the remaning
transmission time is zero, i.e.

rn(t) = 0

B. Initial State and Message Characteristics

At any time ta, running the analytical timing model of the
CAN bus within [ta, tb] requires informaiton of the initial
state and message characteristics.

First, we discuss the reconstruction of the initial state
[Q(ta), Z(ta)]. For Q(ta), since messages are broadcast on
the CAN bus, each node can easily detect which message
is being transmitted on the CAN bus. For Z(ta), according
to Definition 4.1, 4.2, and 4.3, its value depends on two
types of information: characteristics of current instances
of {τ1, · · · , τN}, and how these instances have transmitted
from time of release till time ta. The first type of information
has already known at the time when an instance is released.
The second type of information can be obtained from
software tools that monitor and record data traffic on the
CAN bus. For example, Esd Electronics, Inc. provides a
monitoring tool as integral part of the driver for their CAN
controllers.

Next, we consider message characteristics. In this paper,
we assume that message characteristics within [ta, tb] is
known at time ta. This assumption is reasonable as it is
possible to predict a little bit ahead in the future. Also,
this is the weakest assumption for performing any online
schdulability test.

C. Implementation of the online schedulability test

At any time ta, given the initial state variable and message
characteristics within [ta, tb], we can perform the online
schedulability test over the time interval [ta, tb] using Algo-
rithm 1. This algorithm iteratively checks the schedulability
of the CAN bus in the following ways: (1) within each
discrete mode, it allows the state vector Z(t) to continuously
evolve according to the flow map F until Z(t) reaches the
boundary of the discrete domain and triggers a transition,
as indicated by Line 8 and 9; (2) if the transition is from a
mode to itself, it evaluates the schedulability of τn according
to Theorem 5.1, as shown in Lines 11 − 15; and (3) if the
transition is between two different modes, it re-calcuates the
destination mode, as indicated by Line 18.

The variable DSn indicates the online schedulability test
result of τn within [ta, tb]: when an instance of τn is
schedulable, its corresponding element in DSn equals to 0;
otherwise, its corresponding element in DSn equals to 1. A
message τn is schedulable within [ta, tb] if and only if all
instances of τn that are released within [ta, tb] are schedu-
lable, i.e. max{DSn} = 0. The CAN bus is schedulable
within [ta, tb] if and only if all messages are schedulable
within [ta, tb], i.e. max1≤n≤N{max{DSn}} = 0.

VI. SIMULATION

In this section, we use a simple example to demonstrate
the effectiveness of our online schedulability test when



Algorithm 1: Online Schedulability Test
/*Schedulability of the CAN bus within [ta, tb] */
Data: ta, tb, Q(t−a ), Z(t−a ), {Ck

n, T
k
n , E

k
n, P

k
n}Nn=1

Result: {DSn}Nn=1

1 t = ta; mode = Q(t−a );
2 for n = 1 to N do
3 DSn = [ ];

4 while t < tb do
5 switch mode do
6 · · · · · · ;
7 case n :
8 while Z(t) ∈ Dom(qn) do
9 Z(t) = F (qn, Z(t));

10 if min
1≤n≤N

{D(t)} == 0 then

11 for n = 1 to N do
12 if dn(t) == 0 and rn(t) == 0 then
13 DSn = [DSn 0];

14 else if dn(t) == 0 and rn(t) > 0
then

15 DSn = [DSn 1];

16 Z(t) = Reset(qn, qn, Z(t));

17 else
18 Re-calculate the value of mode ;

19 · · · · · · ;

20 return {DSn}Nn=1;

message streams on the CAN bus frequently changes. Our
methods can be easily applied to more complex examples.

At the design stage, we assume that three periodic mes-
sages {τ1, τ2, τ3} start their transmission on the CAN bus
simultaneously from time 0. The three messages have the
following characteristics[

T k
1 , T

k
2 , T

k
3

]
= [ 200, 250, 300 ] ms,[

Ck
1 , C

k
2 , C

k
3

]
= [ 40 , 50 , 60 ] ms,[

Ek
1 , E

k
2 , E

k
3

]
= [ 100, 175, 200 ] ms.

Moreover, the three messages are assigned unique identifiers
such that

P k
1 < P k

2 < P k
3

which implies that τ1 has a higher priority than τ2, which
has a higher priority than τ3.

At system run-time, we consider two types of online
communication adjustments. One is the change of message
periods. We assume that τ1 and τ2 change their periods
within [22, 26]s as[

T k
1 , T

k
2

]
= [160, 210] ms.

The other type of online adjustment is the addition of new
messages. We assume that another periodic messages τ4
appears on the CAN bus within [20, 26]s. The new message
has the following characteristics[

T k
4 , C

k
4 , E

k
4

]
= [ 200, 50, 200] ms,

Moreover, the new message is assigned a unique identifier
such that

P k
1 < P k

4 < P k
2 < P k

3

Figure 4(a) shows the transmission of four messages on
the CAN bus within the time interval [20.5, 23.5]s. The
value ”0.5” indicates that the transmission of the message is
blocked by other higher priority messages on the CAN bus;
the value ”1” indicates that the message is being transmitted
on the CAN bus; and the value ”0” indicates that the message
finishes transmission. By closely examining Figure 4(a),
we can see that two instances of τ3 that are released at
time 21s and time 22.8s have not been transmitted before
their deadlines. Figure 4(a) shows the online schedulability
test of the CAN bus within the time interval [20.5, 23.5].
As discussed in Section V, the value ”1” indicates that
an instance fails to meet its deadline and the value ”0”
indicates that an instance meets its deadline. According to
Figure 4(b), we can easily see that two instances of τ3 that
are released at time 21s and time 22.8s fail to meet their
deadlines. Therefore, the observation in Figure 4(b) exactly
match that in Figure 4(a), which implies that our online
schedulability test can accurately identify the unschedulable
message instances.

VII. CONCLUSION

This paper proposes an online schedulability test of the
CAN bus, which is based on an analytical model. The
simulations show that the online schedulability test can
accurately report the lost of schedulability on the CAN bus.
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Abstract—This paper presents a methodology to model the
dynamics of traffic scenes, including the participating vehicles,
vehicle clusters, the attributes and relations of the scene elements,
and related events, like cluster merging and splitting. Compared
to other methods, this methodology constructs the models online
using data coming from sensors. The main steps are to identify
the elements of a scene, to find the relations among the elements,
and to construct analytical prediction models for the traffic scene
dynamics. The paper discusses all the related theoretical aspects,
including ontologies for traffic scene description, stochastic pre-
diction of event sequences, and vehicle and cluster identification
using sound-based vehicle localization.

I. INTRODUCTION

Modern applications, e.g., intelligent traffic systems, smart
power grid, and critical infrastructure monitoring, require
large-scale decision making networks that operate in tight
interactions with the natural environments. Natural environ-
ments are fundamentally different than engineered systems
(i.e. plants, autovehicles, and consumer goods), which have
been the traditional beneficiaries of optimized control. Engi-
neered systems have, in general, a well-defined and predictable
behavior as their operating conditions and requirements are
well defined. Natural environments are arguably more complex
and diverse with respect to their composing elements and
interactions. Many interactions and conditions of the natural
world are unknown until they are produced, hence are hard
to predict and characterize a-priori. Second, natural environ-
ments are continuously changing without necessarily moving
towards an end state or progressing towards a final goal. The
two arguments stress that the modeling and representation
of natural environments must tackle dynamically changing
situations that include a large variety of emerging entities and
interactions. Precise modeling of traffic scenarios, a particular
case of natural environments, is important for the design and
optimization of many traffic related applications, including
intelligent traffic systems and smart vehicles.

Mathematical models to predict various traffic scenarios
have been a researched over the last 60 years [13], [17],
[18]. More recently, stochastic modeling methods have been a
popular way of representing traffic flows. Belomestny et. al. [3]
discuss highway traffic modeling using Gaussian densities.

The models give good predictions if the traffic load is light,
hence vehicles’ interactions are limited. For heavy traffic,
however, the model fails to capture well the interactions. A
different approach uses conditional autoregressive modeling,
in which the local interactions between vehicles follow the
characteristics of Markovian process [7]. Ridge regression [19]
and Bayesian networks [15] have been also suggested for
traffic modeling. Another approach is to use cellular au-
tomata [14]. Monte Carlo simulations are used to find possible
outcomes of a given scenario, including any outlier conditions.
A similar simulation paradigm is pursued also in microscopic
traffic models [2], [11]. Microscopic simulators mimic vehicles
as particles, such as the particles of a gas [18]. They capture
well the local interactions between vehicles [18], [8], [17]
but often neglect their physical characteristics, like length and
mass. A third approach is to represent traffic flow similar to the
dynamics of flowing fluids [2], [13]. A novelty of the technique
in [2] is in that it attempts to incorporate driver-specific factors,
such as the psychological element. Finally, a fourth approach
is to represent traffic similar to queuing systems [9], [10], [12].
They capture well situations, like traffic congestions and the
presence of traffic lights.

Modeling and representing traffic scenes remains a chal-
lenging effort because of the following three main aspects:

• Incomplete sensing: The utilized sensing devices might
be insufficient to sample all signals that are relevant in
certain conditions. The traditional philosophy of embed-
ded system design is to introduce specific sensors to di-
rectly sample all the signals important in every situation.
However, the unknown conditions invalidate this strategy
as new conditions might involve signals that were not
identified a-priori. Besides, constraints, like cost, energy
and power consumption, and availability of the hardware
resources needed to implement the frontends, limits the
number and type of sensors that can be used in a practical
design, and hence implicitly the kind of situations in
which the embedded node operates efficiently. Also, some
of the relevant attributes cannot be directly sensed.

• Algorithmic limitations: The algorithmic descriptions in



embedded systems usually express the sequence of steps
that transform state values (e.g., variables) for specific
inputs and events. An important caveat is that the system
is completely defined, meaning that all its state variables,
inputs, and expected responses are well defined for all
situations. However, this is insufficient as the identity and
defining attributes of the elements in a traffic scene are
often not known at the time of specification development.
Also, the variety of interacting objects is huge and
the importance of interactions can change dramatically
for specific conditions. New cause-effect schemes can
emerge so that new kinds of correlations are induced
between the objects. This makes it difficult to use al-
gorithmic descriptions to represent an environment.

• Human and social dimension: The importance of these
elements depends to a significant degree on the specific
interactions among individuals and groups, and how their
behavior adjusts to such interactions. For example, indi-
vidual drivers might decide to adjust their behavior and
expectations based on specific external conditions (e.g.,
weather, time, and so on), their subjective state (i.e. state
of emotions), and the behavior of the other individuals
(including collaborative and competitive interactions with
other individuals). The nature and quality of decision
making depends to a large degree on factors that must
be analyzed for the specific scenario.

This discussion suggests that modeling natural environments
in which CPS operate must first understand the semantics
of a given scenario, and then produce prediction models
that capture the possible outcomes of the models. Scenario
understanding involves identifying the components of a scene,
the attributes of the components, the interactions between
components, and their dynamics in time.

This paper proposes a modeling methodology to express
the dynamics of traffic scenes, including the vehicles and
vehicle clusters forming the scene, the attributes and relations
among the scene elements, and events, such as cluster merging
and splitting. Compared to other methods, this methodology
constructs the models online using data coming from sensors.
The methodology has three steps: identifying the elements of a
scene, finding the relations among elements, and constructing
prediction models for the traffic scene dynamics. Scene ele-
ments are identified using an ontology describing the possible
components, and an algorithm that clusters instances (e.g.,
vehicles) using the common attributes of the instances and
separates existing clusters using the distinguishing attributes.
The clustering algorithm is based on Support Vector Machines
(SVM). Prediction models are built by relating the analytical
expressions of the identified scene elements (the analytical
expressions are part of the ontology) through a stochastic
scheme which predicts the likelihood of having various event
sequences, like cluster merging and splitting. Cluster identi-
fication (using SVMs) using sound-based vehicle localization
is also discussed in the paper.

The paper has the following structure. Section II discusses
the ontology used in representing traffic situations and then

suggests a method to construct the representation for a real
traffic environment. Section III presents the procedure to esti-
mate the dynamics of certain traffic events, like vehicle cluster
merging and splitting. Section IV introduces our solution
for detecting clusters and events based on sensor readings.
Conclusions end the paper.

II. PROBLEM DESCRIPTION

The goal of this work is to understand at run time the se-
mantics of traffic scenes (environments) based on audio range
inputs collected through a network of embedded nodes with
sound processing features [1]. Understanding traffic scenes
includes the following main challenges:
• Finding the components of a scene: This capability iden-

tifies the elements of a traffic scene and their defining
attributes. The elements include not only physical objects
(e.g., objects with attributes directly sensed through the
sensors) but also more abstract elements that are used
in the reasoning process, like concepts which are not
directly sensed but impact the observed signals as well
as abstract concepts and categories. Scene components
are characterized by a set of well defined, repeatable
attributes (which creates the invariant identity of a com-
ponent) and a set of attributes that distinguish the concept
from other concepts.

• Understanding the relations between the components in
a scene: This capability finds the interdependencies and
correlations that exist between the components in a scene,
including cause - effect relations, in which a certain
element causes or enables a given effect, and various
kinds of correlations between elements.
Getting insight into the cause of the existing relations is
a first main requirement. In addition to the correlations
that result directly from the nature of the application,
other correlations are produced due to specific conditions
and properties of the participating elements. For example,
traffic flow can be obstructed by an obstacle on the road
(direct cause) or a set of drivers with specific driving
profiles that slow each other down. The second situation
can be inferred from the scene characteristics even if it
is not directly specified as a cause for slow traffic.
Disambiguation is a second main requirement as multiple
causes can produce similar effects. For example, group
of vehicles slowing down can be either because of some
conservative drivers or due to potholes present in the
road. The sensed information must be used to deduce
the more likely cause that produces a situation among
the two possibilities.

• Predicting the evolution of a scene: The capability refers
to the dynamics (evolution) of a traffic scene, including
the possible situations that can emerge within a future
time window. Predictions are important to correct erro-
neous data from the sensors, to identify the necessary
and sufficient data needed for scene understanding, and
to preemptively adopt decisions for situations in which
reactive actions are insufficient.
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Fig. 1. Simple traffic scene

Example: Let’s consider the simple traffic situation in Fig-
ure 1 to illustrate the three challenges in scene understanding.
Figure 1(a) presents five vehicles moving on the road. Scene
understanding must first identify the three vehicle clusters,
where a cluster comprises of the vehicles moving according
to the same pattern (e.g., similar speed and speed variations).
This pattern must be different from the patterns of other
clusters. If the clusters move with different speed then only
speed is sufficient for cluster identification. However, if two
clusters are moving at the same speed then additional attributes
are needed for differentiating the clusters, such as the inter-
spacing di,j between the vehicles. A possible differentiation
criterion is that interspacing is significantly larger than the
average of the other interspacing.

An important aspect in concept identification (including
finding concept attributes) is the identification of the necessary
and sufficient information that makes the identification process
possible. Moreover, inferring the information needed for scene
understanding helps solving the ambiguities that can occur
between different concepts with common attributes. Hence,
concept identification relies not only on finding similarities
between concepts but also outliers.

Another important objective of scene understanding is get-
ting insight into the causes of the relations between concepts,
and solving the ambiguities that occur during this step. These
relations are not directly evident from the description of a
traffic application. For example, there can be multiple causes
for vehicle slow down, e.g., potholes, stopped cars, traffic
lights, and flooded areas. However, these causes can be often
distinguished from each other by using sufficient relevant
attributes. For example, potholes force cars to mainly slow
down and change lanes, while stopped vehicles cause vehicles
only rarely to switch lanes or to stop. Moreover, traffic lights
impose a periodic stopping of all cars, while for other periods
cars movements are not affected. Finally, flooded areas cause
all vehicles to stop and wait until the cars in front pass. In
this case, there is no attribute that distinguishes the four cases.
Instead, the ontological hierarchy in Figure 1(b) must be used
for getting insight into the traffic scene and disambiguate the
possible cause - effect relations by finding the most likely
cause.
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Fig. 2. Simple ontology for traffic applications

Once the concepts and their relations in a scene are un-
derstood, the information is used to understand the expected
dynamics (evolution) of the scene and the emergence of new
relations. For example, if the driver profile in Figure 1(c) does
not match the speed attribute of the cluster, it is likely that that
vehicle will leave the cluster in the near future.

III. ONTOLOGY DESCRIPTION

An ontology describes the concepts, attributes (properties),
and permanent relations among the concepts of an application
class. Ontologies offer an abstract yet complete description of
the possible situations that can occur in reality. Each ontology
defines the concepts (components) that form a real situation,
the relations according to which the concepts are linked
together, and the attributes (features) of the concepts, the
constraints of the attribute values (e.g., sequencing over time,
impact of events, etc.). The instantiation of an ontology for
a specific scenario is useful to find the mathematical models
that describe the scenario. The models result as a composition
of the models describing the concepts and relations identified
from the ontology.

Guarino and Welty [4], [5] propose that ontologies are
characterized using metrics, like unity and identity. Unity
states that all instances of a concept are linked to the concept
through a well defined set of properties. Rigidity indicates that
properties do not change within a time window but then can
change as a result of an event. A rigid property carries identity
condition if it the existence of the property implies that the
involved instances are equal. We propose a similar approach
based on the common attributes of the instances of a concept.

A. Traffic Scene-related Ontology

In our approach, every concept represents a group of
instances that share a common set of attributes and are
distinguishable from other instances and concepts by another
set of attributes. Attributes are invariant features of instances.
There can be various perspectives to describe the invariant
character of attributes, such as invariant over time, space,
population, etc.

The meaning of a traffic scene is defined in terms of a set
of basic semantic elements, which cannot be defined using
more basic elements and can be estimated based on the inputs
coming from sensors. The basic semantic elements (BSEs) to
be identified and analyzed include the following aspects:
• Vehicle attributes: Some of the typical vehicle attributes

include kind, speed, acceleration, position, and trajectory.
• Driver’s driving profile: A profile includes his/her pre-

ferred style of driving depending on traffic and weather
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conditions. For example, the driver’s profile describes
the likelihood of changing the speed or trajectory (e.g.,
switching the lanes).

• Clusters of vehicles: Clusters are formed by vehicles that
travel while having a common set of stationary attributes,
such as a constant number of vehicles in the cluster and
vehicle speed variations and inter-vehicle spacing that
pertain to well-defined (yet unknown) ranges.

• Cluster attributes: Every cluster is characterized by at-
tributes like size (number of vehicles), speed range, tra-
jectory, time of formation and time of dispersion. Clusters
have also attributes that are different from the attributes
of vehicles, e.g., spacing between cars.

• Cluster-level, social behavior: The way in which the
drivers forming a cluster change their driving behavior
based on the cluster characteristics, e.g., drivers decide
to adapt to the speed of the other drivers in the cluster,
or start looking for opportunities to leave the cluster.

• Cluster dynamics: Vehicle clusters go through modifi-
cations, such as a cluster splitting into sub-clusters and
different clusters merging into a single clusters. Another
kind of interaction is if two clusters automatically corre-
late their attributes, like speed.

• Road conditions: This refers to special road conditions,
e.g., the position of potholes, traffic signs, and stopped
vehicles.

• Weather conditions: This aspect relates to the nature of
weather conditions, such as the position of ice and water
on the road.

The elements above define a simple ontology for traffic
applications. They are the basic elements involved in traffic
and are used for expressing the possible interactions and
correlations in traffic scenes. Every particular traffic scene is a
specific instance of the ontology. Understanding the behavior
of traffic involves constructing the traffic scene corresponding
to the ontology.

Figure 3 illustrates the nature of relations between the con-
cepts of a traffic-related ontology. Figure 3(a) shows concept
instantiation and enabling relations. Instantiation, indicated
with solid line, defines that concept car is a more specific
concept than concept vehicle. Some of the defining attributes
of concept vehicle have a more constrained description for car.
For example, attribute size is restricted to a smaller range. Still,
the constrained attribute allows distinguishing the concept
from other concepts instantiated based on concept vehicle.
Enabling relations, shown with dotted lines, indicates that the
characteristics of the related class are used to control (refine)
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Fig. 4. Traffic scene understanding methodology

more specific attribute values for the concept. For example,
the attributes of concepts driver and conditions restrict the
attribute values of concept vehicle.

The is-part relation in Figure 3(b) (shown with dotted
line) defines that all attributes of the target concept depend
on attributes of the originating concepts or instances. This
means that for every attribute of the target concept, every
participating concept has at least one attribute that influences
the attribute. For example, all attributes of concept cluster (of
vehicles) depend on the attributes of the instances (vehicles)
that form the cluster. Note that the attributes of the target
concept might depend also on other attributes than those of
the originating concepts or instances. A concept set Cin is a
complete description of the is−part relation with concept C,
if there is no other concept that has a is− part relation with
concept C.

B. Constructing Traffic Scene Representations

Figure 4 presents the proposed methodology to construct
representations of traffic scenes. The methodology has three
steps: (i) identifying the entities that participate to the scene,
such as individual vehicles, vehicle categories (i.e. sedan,
truck, SUV, etc.), vehicle clusters, road obstacles, traffic lights,
and so on; (ii) understanding the relations between the found
entities, and (iii) predicting the dynamics of the scene based on
analytical models for the scene as well as sensed data acquired
in real time.

The first step, entity identification, finds the participating
entities based on their distinguishing attributes (which separate
them from other entities). Every instance, i.e. vehicle in a
scene, has physical attributes (PAs), some of which can be
measured directly through sensors, e.g., position, dimension,
weight, temperature, time, and so on. Some of the sensor



readings might be unavailable at a certain moment. Every
attribute can have values from a (constrained) domain. In ad-
dition, attribute descriptions might include constraints defined
over the associated attributes, including constraints between
the goal of the application and attributes. Common attributes
of multiple instances enable the identification of the categories
to which the individual entities pertain to, like the vehicles that
form a cluster.

Example: For traffic applications, possible PAs are position
(of a vehicle), time, dimension and weight (of a vehicle).
Speed, another attribute of a vehicle, is represented as the
following tuple: (x−x0

t−t0
, (x, t), (x0, t0), t > t0, t − t0 < ε).

The speed attribute (the first component of the tuple) is
defined using two other associations of PAs, (x, t) and (x0, t0).
Besides, the constraints t > t0, t − t0 < ε must be valid
to compute correctly the speed attribute. Similarly, the in-
terspacing between two vehicles A and B is defined as
(xA − xB , (xA, t), (yB , t), xA > xB).

The second step of the methodology finds the causal re-
lations among concepts, such as the reasons that produce
certain constraints and patterns of the attributes of entities.
Causes that are directly observable through sensors are utilized
to formulate hypothesis on the causal relations that might
originate the constraints [16], [20]. Other potential causes,
which are not directly observed, are formulated based on
the ontology of traffic scenes during the insight getting step.
The likelihood of (observable and unobservable) causes are
computed using Bayesian networks, a popular causal reasoning
procedure [15].

The third step constructs the analytical models starting
from the identified scene elements and the causality relations
between them. The analytical models include the mathematical
expressions that characterize the attributes of the elements as
well as the expressions of the causal relations. These models
are then used to predict the future dynamics of the represented
scene. Section IV illustrates the algorithm to predict traffic
scene evolution, including the behavior of the current clusters
and their merging and splitting.

IV. ANALYTICAL DESCRIPTIONS USING ONTOLOGIES

The identified scene description is utilized to produce au-
tomatically analytical descriptions of scene. The analytical
models serve to predict the future behavior and characteristics
of a real scene. Such predictions are important to make
decisions on how to optimize the architecture and parameters
of the monitored traffic system, including traffic lights and
feedback given to the participating drivers.

Figure 5 presents the procedure to estimate the dynamics of
a traffic situation that is monitored through sensors. The goal
is to predict all events within a time window of adjustable
the length. Events correspond to cluster merging and splitting.
The window length is modified at run time such that the
predictions are sufficiently close to the events of the real life
traffic scenario.

The procedure computes a stochastic sequence of events
knowing that every cluster merging is followed by one or more

(26)}

(2)  event = select next event;

(3)  time = expected time of event;

(4)  S = set of clusters that could participate to event; 

(5)  for (all consecutive pairs i,j in set S) { 

(6)    for (all speed vi of cluster i) { 

(7)      for (all speed vj of cluster j) {

(8)        if (vi < vj) {

(9)          p = probability of merging Cvi and Cvj;

(10)         if (p > pthresh) {

(11)           T = time of merging event of Cvi and Cvj;

(12)           add new splitting events at time Tj and with probability p; 

(13)           for (all speed vii < vi)

(14)             Tii = time of splitting Cvi for speed vii;

(15)             add new event at time Tii and with probability p; 

(16)           }

(18)             Tjj = time of splitting Cvj for speed vjj;

(19)             add new event at time Tjj and with probability p; 

(20)           }

(21)         }

(22)       }

(23)     }

(24)   }

(17)           for (all speed vjj < vj) {

(25) }

(1) while (events are possible) {

Fig. 5. Predicting traffic dynamics

cluster splittings, so that the created vehicle groups reflect the
desired driving behavior of the participating vehicles. In an
optimal situation, no vehicle should drive at a lower or higher
speed than the one desired. The algorithm considers every
cluster pair i and j and estimates the likelihood of the clusters
being merged. Then, using analytical equations defined for
clusters in the ontology, the algorithm computes the merging
time (instruction 11). The condition of a subsequent cluster
splitting is also verified next (instruction 12). The possible
splitting times corresponding to different splitting scenarios
are evaluated in instructions 13-16 and 17-20. The splitting
times are also computed using analytical equations stored in
the ontological structure.

Stochastic events are generated at steps 9, 12, and 19 to
indicate cluster mergings and splittings with a probability p
which can be estimated based on the attributes of the instances
(e.g., vehicles) forming a cluster. Hence, the output of the pro-
cedure is a set of possible event sequences and the likelihood
of each sequence. Only the sequences with likelihood above
a threshold limit are returned.

The next subsection illustrates the analytical equations that
are used in estimating the expected time moments and proba-
bilities of cluster merging and splitting events.

A. Case Study

The prediction procedure is illustrated for a traffic flow
characterization application. The traffic flow consists of a
sequence of vehicle clusters, such that the vehicles in a cluster
move with similar speed. The ontology description specifies
that all a cluster is defined by all vehicles of similar speed
(speed is a common attribute) and located within a close
neighborhood within each other. The distinguishing of a cluster
from another cluster is based on differentiating attributes, such
as different vehicle speeds or inter-vehicle distances that are



beyond the specified limit. Hence, assuming that εcluster ≥ 0
is the accuracy of the modeling, the speed of any pair of
vehicles i and j of a cluster is related by the following
constraint:

|vi − vj | ≤ εcluster (1)

The parameter εcluster is an input to the analytical model.
Depending on the road conditions, the minimum size of a
cluster is defined as Lim. For very narrow roads, Lim can be
one. The value increases for wider roads.

At time moment t, every cluster CI is characterized by
a set of attributes, including the number of vehicles in the
cluster NCI

(t), the physical size of the cluster, e.g., the
length LCI

(t) measured on the x coordinate, and the character-
istics of the vehicles forming the clusters. These attributes are
Physical Attributes (PAs) and sensed directly through sensors.

Without limiting the generality of the prediction method, the
model assumes that the vehicle characteristics refer mainly to
the driving style of the driver, such as the most likely speed v
at which it would drive, if no speed constraints are set by the
other cars participating to the traffic. Different formalisms have
been proposed for modeling the driving behavior, including
Markov Processes, neural networks, and Bayesian networks.
Because of the constraining due to the other drivers of a clus-
ter, the memory aspect is less important. Therefore, the driving
behavior is expressed as a set of bins, each bin representing
the most likely driving speed, if no constraints exist. If B bins
are used for modeling, then bin k, k ≥ 1, corresponds to the
speed range [vmin +(k−1) vmax−vmin

B , vmin +k vmax−vmin

B ],
where vmin and vmax are the minimum and maximum speed
of a vehicle in traffic. N(CI , k, t) is the number of vehicles
in cluster CI and which pertain to bin k at time moment t.
The specific procedure to model the driver behavior is also
indicated in the ontology.

Cluster descriptions in the ontology include two rules that
(i) express the behavior of a cluster, and (ii) capture the
interaction between pairs of clusters. Regarding the first rule
type, depending on its composition, a cluster can split into two
subclusters, if a group of vehicles starts moving faster than the
rest of the cluster. A cluster is considered to be split, if the
distance between the two groups is larger than the limit DLim.
Also, a vehicle i attempts to exit a cluster if its desired speed
differs from the cluster’s speed by more than εsplit:

|vi − vcluster| ≥ εsplit (2)

The desired speed is estimated based on the predicted driver’s
profile.

Using the mathematical constraints defining the conditions
of a cluster split, the prediction procedure estimates the prob-
ability of having a split. Assuming that all vehicles attempt
to reach their desired speed (predicted based on the expected
driver behavior), the probability of splitting cluster CI into
two sub-clusters CI,1 and CI,2 is as follows:

p(CI , CI,1, CI,2) =
NCI,1

NCI

(3)

∆

Cluster 
merging

Cluster 
merging

split split

Cluster
split

ClusterCluster

Fig. 6. Predicting traffic dynamics

where NCI,1 is the number of vehicles that have a desired
speed larger than vj , where j is the first vehicle of the cluster
meeting condition (2). The speed vj becomes the speed of the
new cluster CI,1, while the vehicles of cluster CI,2 continue
to move at the same speed as cluster CI .

The time at which the separation occurs is modeled as:

tsplit,CI ,CI1 ,CI2
=

DLim

vj − vCI

+ tr (4)

where tr is a random variable modeling the decision of a
vehicle to start moving faster than the rest of the cluster. It
decreases with the value of p(CI , CI,1, CI,2):

tr =
1

p(CI , CI,1, CI,2)
tr0 (5)

tr0 is a constant. These analytical expressions are stored for
the rule describing cluster splitting.

With respect to the second rule type, two clusters interact
with each other only if the second cluster moves at a speed
slower than the first cluster. The interaction between the
clusters can proceed along two situations: (i) the second cluster
decides to slow down to the same speed as the first cluster,
and (ii) the second cluster (or parts of it, if there was a split)
catches up with the slower, first cluster and the two merge.
The result of the first situation (no interaction) is that the two
clusters have the same speed. For the second situation, the
time of merging is expressed as:

tmerging,C1,C2 =
D1,2

|vC,2 − vC,1|
(6)

where D1,2 is the distance between the two clusters, and vC,2

is the speed of cluster C2, which is the faster cluster that
succeeds cluster C1. vC,1 is the speed of cluster C1.

The prediction model uses the analytical equations of the
identified ontological entities to express the clusters’ behavior
as a stochastic sequence of rules, where the above rules
are applied depending on specific conditions, like the traffic
situation and the driving patterns of the drivers. The model
offers statistical predictions indicating the likelihood of having
cluster mergings and splits. Figure 6 illustrates the method.

Between successive cluster interactions, i.e. by applying the
rules for merging and no interactions, clusters are partitioned
into sub-clusters by applying zero or more times the rule for
cluster splitting. The time between two consecutive interac-
tions is defined as:

T =
∆

|vfastest,C2 − vslowest,C1 |
(7)

where ∆ is the distance between the two clusters. vfastest,C2

is the speed of the fastest sub-group that splits from the



second cluster C2 and vslowest,C1 is the speed of the slowest
sub-group that splits from the first cluster C1. The modeling
method must estimate vslowest and vfastest as well as the
expectations of the splittings that are likely during the time T .

The probability of having a certain speed v as vfastest is
estimated as follows. It assumes that all splittings during time
T produce only sub-clusters that have speed v as the highest.
There are numerous scenarios that result in this case. For
example, there can be a single split that generates one cluster
of speed v while the rest keeps the previous speed. Or, two
splits, in which first a lower speed is produced followed by a
second split that generates the desired speed. In general, for
k splits, the first k − 1 produce sub-clusters of lesser speed
than v, while the last partition generates the sub-cluster of
speed v. Assuming that the number of expected split points
is E[#splits] then the probability of having a sequence of splits
such that speed v is highest is expressed as:

p(v) = p(CI , Cv, Cvc
)(1− E[#splits]

∑
∀vi<v

p(CI , Cvi
, Cvc

))

(8)
The expected number of split points E[#splits] depends on

the time interval between consecutive splittings, as defined by
formula (4). Computing a value for the expectation is difficult
as the time intervals depend on the order of splittings. In-
stead, an approximation cab be calculated using the following
bounds:

D12 ∆vmin

D + tr∆vmin
≤ E[#splits] ≤ D12∆vmax

D + tr∆vmax
(9)

The expression results by observing that relationship (4) is
monotonically increasing with the value of the speed v,
thus the minimum time interval between splitting results for
maximum difference in speed between v and the speed of the
cluster.

V. SCENE ELEMENT IDENTIFICATION USING SENSED DATA

In the implementation of the methodology, sound based
localization is used to extract the intra-cluster vehicular dis-
tance. Sound localization is the process of identifying the
spatial coordinates of a sound source based on the sound
signals received by a microphone array. Other features of
the sound sources, such as spatial coordinates, distance from
other sound sources, speed of movement etc. are derived from
these localization estimates. This information is utilized for
identifying the elements of a traffic scene, including vehicle
clusters, cluster merging and cluster splitting.

Each sensor node is equipped with a pair of microphones
in order to perform time difference of arrival (TDOA) estima-
tion [1]. The maximum likelihood technique is applied on the
Generalized cross-correlation (GCC) equation to identify the
Angle of arrival or Direction of arrival (DoA) of the sound
source [6].

The elements of the traffic scene are identified using data
clustering. Data clustering groups the data into clusters based
on a criterion function. The SVM-based clustering algorithm
is unsupervised and does not assume any prior knowledge of

the input classes [21]. The algorithm starts by running a binary
SVM classifier against a dataset with randomly labeled input
vectors. This first step is repeated until convergence is acheived
and the acceptable number of KKT violations are encountered.
This is accomplished by using different number of allowed
violators until a lower bound is reached such that the SVM
converges.

After the first step is over, the confidence parameters for
classification are available. The data with the lowest confi-
dence has the worst mislabeled vectors. So, the labels for
this data are switched to the other class. The SVM is again
run on this dataset and therefore has a higher probability
of convergence and results in fewer mislabeled vectors. The
process is repeated until there is no further improvement in
results.

The following 6 scenarios are simulated to identify some of
the semantics of the traffic. The experimental setup for each
of the scenarios is shown in Figures 7a to 7d. Two sensing
nodes (N1 and N2), which are PSoC1 embedded processors
from Cypress Semiconductors Corporation, are used for sound
localization. The distance between the two nodes, D, is 72
inches. Four different positions (P1 to P4) are considered to
simulate the movement of vehicles. Experiments are done with
1, 2, and 3 sound sources to simulate different cluster size
for different scenarios. Sound samples are captured using the
microphones and the localization estimates are used to extract
different attributes such as spatial coordinates of the sound
sources, their speed of movement etc. First, the feature vectors
are clustered into different classes using SVM based clustering
and then the clustered data is used to train the SVM classifier.

1) Single vehicle in favorable driving conditions: In this
scenario, only one vehicle is tracked (Figure 7a). By
favorable driving conditions, we mean that there is no
sudden change in the speed of the vehicle from one
position to the other, that is, it remains constant.

2) Cluster of vehicles in favorable driving conditions: A
cluster of vehicle is simulated using multiple sound
sources, one for each vehicle in the cluster (Figure 7b).
The favorable driving conditions are simulated as de-
scribed previously.

3) Single vehicle in bad driving conditions: This scenario
is simulated as described in Figure 7a but in this case,
the speed of the vehicle varies at different positions.
In real environment, the variation of speed may be due
to potholes, bad weather or road conditions. Even with
varying speed, the classifier can identify the class of
unknown feature vectors based on the intra-cluster object
distance.

4) Cluster of vehicles in bad driving conditions: A cluster
of vehicles in bad driving conditions is simulated using
multiple sound sources (Figure 7b). In this case, the
speed of the cluster is changing with time but the
speed of all the vehicles within the cluster is the same.
Also, the intra-cluster vehicular distance remains same
at different sampling positions.

5) A vehicle joining a cluster of vehicles: Figure 7c de-
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Fig. 7. Simulation of (a) Single vehicle, (b) and (c) Cluster of vehicles, (d) Vehicle joining a cluster

TABLE I
SPATIAL COORDINATES CORRESPONDING TO DOA ESTIMATES

Position 1 Position 2 Position 3 Position 4
X Y X Y X Y X Y

CS1 V1 4.07 52.68 14.30 67.77 34.14 60.32 54.25 49.53
CS2 V1 6.14 47.14 14.26 67.58 38.41 59.35 55.88 47.04

V2 22.44 60.31 26.26 72.89 52.31 57.47 69.92 39.87
CS3 V1 4.37 47.87 15.08 66.85 35.12 63.08 55.88 47.04

V2 12.40 58.76 22.73 66.32 42.78 57.58 64.43 41.19
V3 21.19 61.84 27.60 74.16 51.05 53.97 70.31 40.09

scribes the scenario of a vehicle joining a cluster. A
single vehicle is present at positions p1 and p2 and a
new vehicle joins it at position p3and creates a cluster
of size 2. This is simulated using a single sound source at
p1and p2 and two sound sources at positions p3 and p4.
Experiments are also performed with different cluster
sizes.

6) A vehicle splitting from a cluster of vehicles: Figure 7d
describes the scenario where a vehicle splits from the
cluster. This is simulated using two sound sources at
position p1 representing two vehicles and a single sound
source at positions p2, p3, and p4.

The DoA estimates are used to compute the spatial X and Y
coordinates of the vehicles. The results are shown in Table I.
The dimensions are in inches.

Certain factors affect the localization accuracy of the nodes.
For example, as the distance between the microphone pair
and the sound source decreases, the DoA estimates become
coarser. Physical parameters such as speaker width and sen-
sitivity of the microphone contribute towards measurement
errors. Accuracy of experimental setup and error due to
elevation of microphone and sound source cause results to
deviate from the actual measurements.

Even though these factors skew the results, the clustering
accuracy for a data set with 8 feature vectors used for the
experiment was found to be 87.5%. The classification accuracy
in identifying the 6 scenarios is 100%. The SVM-based
clustering and classification algorithms were executed on the
PC (Intel Core2Duo, 1.3GHz, 1GB RAM) and PSoC 5 (ARM
Cortex core,80MHz) and the respective execution times for
the learning step are 3 ms and 13 ms.

VI. CONCLUSIONS

This paper proposes a methodology to model the dynamics
of traffic scenes, including the participating vehicles, vehicle
clusters, attributes and relations of all scene elements, and

related events, like cluster merging and splitting. The main
steps of the methodology find the elements of a scene, identify
the relations among the elements, and construct analytical
prediction models for the traffic scene dynamics. Compared to
other methods, this methodology constructs the models online
using data from embedded sensors.
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Abstract—Design and Implementation of Safety-Critical Sys-
tems is becoming very difficult becauses it involves many
requirements coming from different engineering domains. Due
to the increase of complexity, software of such systems can no
longer be produced with traditional methods, which show their
limit over time. In that context, new development approaches
have to be introduced to avoid actual development traps and
pitfalls. Among them, the Model-Driven Engineering approach
consists at representing system artifacts with models and auto-
generate the code by refining them from high-level concepts
down to the code. However, as for every new approach, it also
brings new problems such as requirements consistency among
the different notations (models) as well as integration issues (for
example, making sure that implementation code from different
models will behave correctly when merged on a single execution
platform).

This article presents our experience for integrating Guidance
and Navigation Control (GNC) algorithms designed with Ap-
plication Models (Simulink) with Architecture Models (AADL).
The process relies on code generator for both models and
integrate it on a typical execution platform. In particular,
we focus on the challenges of the integration, illustrating the
practical problems we faced for producing a space system using
a Model-Driven Engineering Approach.

Keywords-AADL, TASTE, Simulink, MDE

I. INTRODUCTION

A. Context

Safety-critical systems are getting more complex, col-
locating more functions on the same computing platform.
As a consequence, their design becomes more complicated,
leading to a long and potentially painful design process.
Designers have to take into account requirements coming
from different domains and specified with heterogeneous
formalisms.

For that reason, producing the system using traditional
methods is no longer feasible : checking impact between
all requirements disseminated across different specifications
and notations is impossible, especially when the process
is not automated. For that reason, new approaches must
be designed. In our context, the Model-Driven Engineering
(MDE) approach aims at separating system concerns in
models, let engineers focus on their part of the system
while tools automate the integration and ensure consistencies
between modelling artifacts.

B. Problem

One key aspect of the MDE methodology is the sepa-
ration of concerns: each engineer focuses on designing and
implementing his part of the system dedicated to his domain
while specific tools process each implementation artifact,
ensure their integration and preserve a semantic consistency
between notations.

Despite having a clear separation between each domain,
several problems remain when implementing a full MDE
approach. First of all, because of the use of different nota-
tions, some requirements are sometimes captured twice in
different models using heterogeneous notations. Then, tools
are expected to ensure their consistency but engineers are
also requested not to break them when manipulating models.
Another issue is about simulation and implementation cor-
rectness: even when a system was intensively tested using
simulation functions, its integration as an implementation
code can generate a lot of errors. Most of the time, this is
due to the heterogeneous nature of the execution platform,
whose environment is different from the simulation. Thus,
having a dedicated process that ensures a smooth integration
of system functions by enforcing their behavior correctness
is a must.

In that context, to improve MDE approaches, it is worth-
while to identify all traps and pitfalls in order to strengthen
the overall approach. Outcome of such investigations would
make tools more resilient to potential integration errors,
the type of issue which is typically discovered just before
completion of a project, when few resources are available

C. Outline

The remainder of this paper is structured in two main
sections. The first one is an overview of the tools we
use: the TASTE toolset (Architecture modelling [1]), and
Simulink [2] (Software modelling) and their integration.
Second part of this paper presents our latest experiments
to design a spacecraft system using our MDE toolset by
designing GNC algorithms on top of a distributed archi-
tecture designed with TASTE. We provide a feedback about
traditional traps and pitfalls of such integration, leading to an
open discussion about potential improvements of the whole
MDE development process.



II. BACKGROUND

A. Simulink

Simulink consists of a graphical modelling language and
a set of tools for designing software (an example is shown
in figure 2). It focuses on the definition of functional
concerns and is mostly used to design algorithms in specific
engineering domain (power control, navigation, etc.).

Simulink is a well-known and established tool, providing
convenient notation to abstract engineering concepts with a
user-friendly simulation interface. Thus, it is a very efficient
tool for engineers to prototype, design and implement their
part of the system. In the context of the space industry, it
is used in many engineering domains, from mechanical to
robotics. In the present case-study, it was used to produce
the GNC algorithms of a launcher.

B. TASTE

TASTE [3] is a project developed, maintained and sup-
ported by the European Space Agency. It aims at providing
a MDE toolset for the production of safety-critical systems.
For that purpose, it defines the system using three views:

1) The Data View (DaV) specifies data types and encod-
ing functions used to communicate between system
components using the ASN.1 [4] language (see listing
1 for an example). It corresponds to the external
interfaces of the system, as specified in the ICD that
specified all interfaces between the sub-systems (with
their types, properties, etc.).

2) The Interface View (IV) enumerates system functions
(what the system is doing), their requirements and
constraints (timing, data protection, etc.) and inter-
actions among then (communication channels) using
the AADL [5] language. Function connections refer-
ence the Data View to specify types being used. As
this model remains descriptive (a graphical sample is
shown in figure 3), it has to be associated with code
that implements functions.

3) Deployment View (DeV) defines the execution plat-
form (processors, buses, etc.) of the system, its con-
figuration as well as deployment of functions (from
the Interface View) into it. It also uses the AADL [5]
for that purpose, an example is shown in figure 4.

These models are processed with their functional code to
automatically produce system implementation (as shown in
figure 1) through the following steps:

• The Data View is translated into declarations (data
types, functions) in the target code (C, Ada, etc.) so that
we can use the same interfaces with different languages.

• The Interface and Deployment Views are processed to
create an architecture code that supports the execution
of the functional code. This aims at creating and
configuring resources (tasks, mutexes, etc.) that reflect

requirements specified in the interface view (period,
deadline, etc.).

• The Integration Process compiles the functional code
from the user with the architecture code generated
from models, producing the program to be deployed
on the execution target. This code is also automatically
tailored to the target operating system. As for now, our
toolchain supports several architecture (x86, SPARC,
etc.) and different Operating System for safety-critical
systems such as Linux or RTEMS [6].

FIGURE 1: TASTE development process

C. Integration of Software Models into Architecture Models
Our process (figure 1) automatically deploys application

code (written by domain-specific users, such as electri-
cal/mechanical engineers) on top of architecture code. The
former can be designed using either regular (C, Ada) or
modelling (Simulink, SDL, etc.) languages. Our toolchain
automatically generates glue code that connects functional
blocks, enabling communication between code written with
different languages and executed on heterogeneous architec-
tures.

However, when integrating application models (such as
Simulink), algorithms requirements must comply with the
architecture constraints (timing requirements of the Inter-
face View, interfaces definition of the Data View, etc.). Us-
ing a traditional, manual integration, no check is performed,
lack of compliance between models is discovered either after
integration (at best), or during execution (at worst). The
following section contains the description of a complete case
study we conducted in order to experiment and validate the
use of a model-based approach with the TASTE tools.

III. CASE-STUDY AND FEEDBACK

A. Overview
In order to validate our approach and tools, we have built a

system to support the validation of the navigation algorithms



(GNC) of a onboard launcher software. In that context, we
have developed (or reused) a large set of Simulink models
that represent the environment of the software: the sensors
and actuators on one side, and the flight dynamics on the
other side. This way we have the means to generate realistic
data at runtime to feed the control laws and run in closed
loop.

On the other side, we have the flight code of the control
laws in Ada language. The challenge is to put both pieces
together, and make them run on different platform: first
natively on Linux to test the integration, and later on a
mixed platforms (x86/Linux for the environment models,
and Sparc/Leon for the control law running in real-time). At
runtime, we want to observe data and plot the control laws’
main parameters. TASTE provide the means to achieve these
goals.

B. Application modelling

FIGURE 2: Simulink model of our case-study

Modelling the application with TASTE was done in three
steps

1) specify the data types in ASN.1 to describe the mes-
sages exchanged between our functions (listing 1)

2) capture the logical architecture of the system (figure
3) into an Interface View that references the Simulink
model (shown in fig:simulink-model).

3) model the deployment of the application, by mapping
the functions onto hardware components, and connect
them with buses (figure 4).

From these models, TASTE generate skeletons, that con-
sist in empty code blocks that would contain the application
(Simulink models). Once these code blocks have been filled
by the user, tools automatically create all the glue code that
is necessary to implement the system (communication, etc.)
without having to manually tweak the interfaces. This auto-
connects blocks from different implementation languages
(Ada, C, Simulink, etc.) smoothly, without having to change
the communication mechanisms. Using these tools gave us
guarantee that there would be no inconsistencies in data
representation for each block. This allows to start running

simulations very quickly and make rapid prototyping of
embedded application without having to tweak application
code.

VEGA DEFINITIONS : : =
BEGIN
T−GNC−LV−SIM−CONTEXT : : = SEQUENCE {

a t t i t u d e−q u a t e r n i o n T−QUAT−FLOAT32 ,
ng−ve l−i n c r− i r s T−VECT3−FLOAT32 ,
ng−ve l−i n c r−a c c e l e r o T−VECT3−FLOAT32 ,
f i l t e r e d −a n g l e s−sample−1 T−VECT3−FLOAT32 ,
f i l t e r e d −a n g l e s−sample−2 T−VECT3−FLOAT32

}

T−GNC−LV−SIM−INPUTS : : = SEQUENCE {
sequ−exec−r e q u e s t−v e c t

T−HAS−SEQUENCE−EXEC−BEEN−REQUESTED−VECT,
tvc−s e t−p o i n t−eng−v e c t

T−TVC−SET−POINT−ENG−VECT,
r a c s−ev−cmd−v e c t

T−RACS−EV−CMD−VECT
}

T−QUAT−FLOAT32 : : = SEQUENCE
( SIZE ( s i z e−T−QUAT−COMPONENTS) ) OF T−FLOAT32

# . . .
END

Listing 1. Data View of our case-study

FIGURE 3: Interface View of our case-study

C. Feedback

The experience gives us the ability to produce a large scale
launcher simulator that we are now running to cross-check
the control laws of our launchers. Until now, we did most of
these simulations entirely within the Matlab/Simulink envi-
ronment. It is also a very powerful and effective approach;
the drawback is that the execution is not representative of
real targets, and that the integration of the code later on in
the real onboard software can become much more difficult
when done at a later stage. Using automated tools to make
the models and code integration from the very early stages



of the development brings significant added value and makes
things simpler to integrate for non-software people.

However, we experienced two major issues when in-
tegrating Simulink code on the real target. First of all,
the generated code from application models is not fully
consistent with the models specification, leading to errors
that were not seen during simulation. This brings us to
debug the generated code by hand to discover the problem.
This should be automatically detected by the tools. Also,
another issue was the programming skills of engineers : the
toolchain required adaptation of existing Simulink models
to the TASTE interface. This job requires some model
refactoring to fit TASTE and Simulink models and was not
easy for non computer-scientist engineers. As a result, we
spent a lot of time explaining the design process to engineers
so that they can use our toolchain.

IV. CONCLUSION

This article presents our feedback about the issues of the
deployment of software models with architecture, particu-
larly regarding potential errors that are introduced during the
integration phase, at the latest phases of system production.
These experiments were done in the context of internal
projects at the European Space Agency, while integrating
GNC algorithms (designed and tested usign simulation func-
tions from Simulink) with an execution runtime.

These issues convince us to strenghthen the overall de-
velopment process and propose new functionalities that
aim at checking system compliance between execution and
simulation. For example, being able to monitor system
interfaces and check correctness between simulation and
execution would help developers but also support the overall
development process, providing artifacts required for system
validation.

A. Perspectives

Verification between models could also be introduced ear-
lier in the development process, prior to system integration.
For example, it would be possible to check compliance be-
tween heterogeneous models before generating or integrating
code. This engineering effort, even if technically feasible,
would require a static analysis of the model, which requires
a huge maintainance effort due to the number of application
languages supported by our toolchain.
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ACRONYMS

ASN Abstract Syntax Notation
ICD Interface Control Description
GNC Guidance and Navigation Control
MDE Model-Driven Engineering

TASTE The ASSERT Set of Tools for Engineering

FIGURE 4: Deployment View of our case-
study
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Abstract—Large Cyber-Physical Systems such as avionics
and automotive systems often require large integration efforts
between third-party components. These components provide
functionality at different levels of criticality yet share many
of the same underlying resources (CPU, Memory, Network,
Disk, Transducers). As a result, protections mechanisms are
needed to prevent lower-criticality task from interfering with
higher-criticality ones. In this paper, we discuss how traditional
temporal protection mechanisms such ARIC 653 partitions fail
to fully protect high-criticality tasks from lower-criticality ones.
We then show how the Zero-Slack QRAM scheduler (ZS-
QRAM) can be used in multi-layer systems to avoid these
problems. Furthermore, we propose the use of criticality layers
based on the asymmetric protection scheme of ZS-QRAM in
order to simplify this integration, increase its robustness, and
reduce its resource usage. Finally, we discuss some open issues
that need to be addressed in order to remove some of the
limitations of this approach.

I. INTRODUCTION

In modern Cyber-Physical Systems (CPS), such as avion-
ics and automotive systems, there is increasing pressure to
reduce cost while increasing functionality and managing
physical resources like power and heat. This has resulted
in the consolidation of functionality of different components
into shared hardware resources (e.g. processor and memory).
Unfortunately, such sharing can lead to interference across
tasks (e.g. one task using the processor longer than expected)
each of which may have different criticality requirements
for the system. For instance, if we deploy an ABS braking
system task on the same processor as a navigation system
task of the car, if the latter does not release the processor
on time it could make the former miss its deadline. This
problem is a concern of growing interest and has spawned
initiatives to investigate building blocks that can be used to
safely construct mixed-criticality systems like the Mixed-
Criticality Architecture Requirements (MCAR) [1] as well
as standards like ARINC-653 [2] and ISO-26262 [3].
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The consolidation of mixed-criticality systems demands
the temporal protection of critical functionality. Traditional
approaches such as ARINC 653 offer a symmetric protection
scheme where not only higher-criticality functionality is
protected from lower-criticality one but also lower-criticality
is protected from higher-criticality one. Unfortunately, this
type of protection can lead to criticality inversion, i.e., lower-
criticality tasks blocking a higher-criticality one. Specifi-
cally, symmetric protection can stop a higher-criticality task
if it tries to run longer that its allocated budget in order
to allow a lower-criticality task to run. In contrasts, Zero-
Slack Rate-Monotonic (ZSRM) scheduling [4] provides an
asymmetric protection scheme where a lower-criticality task
can be stopped in order to ensure that higher-criticality
tasks meet their deadline but a lower-criticality task cannot
interfere with higher-criticality ones. The Zero-Slack QoS
Resource Allocation Model-based (ZS-QRAM) [5] sched-
uler extends this concept even further to systems where tasks
can have the same level of criticality but provide different
utility to the user. In this case, when an overload occurs,
the lower-utility tasks are degraded to a lower execution
rate (longer periodicity) to allow higher utility tasks to keep
executing at a high rate.

We believe that asymmetric temporal protection should
be the norm when integrating mixed-criticality CPS. This
type of protection enables the creation of criticality layers
that support layered certification standards like DO-178C [6]
and ISO-26262 [3]. In this paper, we present a layered
architecture based on the asymmetric temporal protection
of ZS-QRAM and related mechanisms to support different
aspects of the applications. Finally, we discuss the issues
that still need to be addressed to provide a comprehensive
solution.

II. ZS-QRAM

In this section, we provide background information related
to ZSRM and ZS-QRAM as a basis for our discussion on
using it in a layered manner. ZSRM is a fixed-priority pre-
emptive scheduling approach for uniprocessors. In ZSRM,
a criticality value (ζi) is associated with each task τi to
reflect the task’s importance to the safety of the CPS1.

1Our convention is to use lower values to indicate higher criticality.



These tasks are periodic with a period Ti, an implicit
deadline at the end of the period, and two execution times.
The first execution time is considered the WCET during a
nominal mode of operation, called Nominal-Case Execution
Time (Ci), and the other is called the Overloaded-Case
Execution Time (Co

i ) that is considered the WCET during
an overload situation (e.g. when the number of objects to
avoid is unusually large). ZSRM works on top of traditional
priority-based preemptive real-time schedulers. It is based on
the observation that criticality inversion only matters under
overload conditions. We use this observation to create two
execution zones for each task τi. In the first zone, every
task is allowed to execute as normal, while in the second
zone, every task τj |ζj > ζi is suspended. This suspension
effectively blocks the interference of lower-criticality tasks
in the case of an overload condition, up to the completion
of the task activation. It must be noted that τi itself can
also be suspended by a task τc|ζc < ζi in τc’s second zone.
The execution zones partition the execution of each task into
two modes: the normal mode (N mode) and the critical mode
(C mode). Our scheduling algorithm then calculates the last
instant at which a task can suspend lower-criticality tasks in
order to finish before its deadline. This instant is known as
the zero-slack instant (Zi) and is used at runtime to setup
a timer when a job Ji,k from τi arrives. If such an timer
expires, then the lower-criticality tasks are suspended, but
if Ji,k finishes before the timer expires, then no suspension
is performed and the lower-criticality tasks are allowed to
continue.

ZS-QRAM builds upon ZSRM by adopting mechanisms
from the Quality-of-Service (QoS) Resource Allocation
Model (Q-RAM) [7]. Q-RAM uses utility functions that
describe the different QoS levels that tasks can obtain along
with the resources (e.g., processor time) that they consume
and the utility that the user derives from each QoS level. In
simple configurations, Q-RAM primarily takes advantage of
the fact that as applications (e.g. video streaming) increase
their QoS level, the incremental utility to the user decreases.
This is known as diminishing returns. For instance, in a
video streaming application increasing the frames per second
from 15 to 20 gives the user higher utility (i.e., perceived
quality) than increasing from 20 to 25 frames per second.
Q-RAM uses the utility functions to perform a near-optimal
allocation of resources to different tasks exploiting the
diminishing returns property. In particular, the diminishing
returns property manifests itself in these functions as a
monotonically-decreasing utility-to-resource ratio. This ratio
is know as marginal utility. Q-RAM uses the marginal utility
to perform the allocation one increment at a time starting
with the increment that derives the largest utility for the
smallest allocation of resources (largest marginal utility).
In each of the subsequent steps, it selects the next largest
marginal utility increment until the entire resource (e.g. CPU
utilization) has been allocated. In the ideal case, the marginal

utility of the last allocation (QoS level) of all the tasks is
the same.

ZS-QRAM is designed for tasks whose different QoS
levels are implemented using different task periods. Task pe-
riods are mapped to allocation points in the utility functions.
ZS-QRAM first considers utility functions based on the Ci

of the tasks, and utilizes Q-RAM to do an initial allocation
where each increment in the allocation is represented by an
increasingly shorter period. If a task overloads at runtime,
an overload management mechanism is used to degrade
tasks (by selecting a longer period) to keep the taskset
schedulable. This mechanism uses task utility functions
based on their Co

i to select the tasks that render the least
utility per unit of CPU utilization (marginal utility).

ZS-QRAM supports an admission test that uses two steps.
First, it performs an initial Q-RAM allocation using the
nominal marginal utility of the tasks. In other words, it
builds utility functions assuming tasks run for their Ci

and follows the Q-RAM allocation order until the available
CPU utilization is fully allocated. Second, once the Q-RAM
allocation is completed, the ZS instant Zi of each task τi is
calculated. This instant is then used to degrade tasks τj with
lower utility than τi. To support this degradation, tasks are
structured as a set of task modes with different utility and
the degradation is configured as a mode transition.

III. ZS-QRAM LAYER HIERARCHY

ZS-QRAM embeds both the criticality-based and the
utility-based scheduling and enforcement policies. Since
the criticality-based policy has precedence over the utility-
based one, they form layers where tasks scheduled based on
criticality have precedence over tasks scheduled based on
utility. We identify these layers as the criticality layer and
the utility layer respectively.

The criticality layer is divided into multiple sub-layers
(called simply layers when appropriate) based on criticality
levels (used in the taskset). Criticality layers provide two
important properties that simplifies the integration of mixed-
criticality systems: layer isolation, and layer overbooking.
Layer isolation guarantees that a higher-criticality layer
cannot be affected by a lower-criticality layer. In other
words, every task τi in a high-criticality layer are guaran-
tee to execute for Co

i before its deadline whether or not
lower-criticality layers exist. This implies that these lower-
criticality layers can be added on top of higher-criticality
ones without compromising their guarantees. On the other
hand, layer overbooking allows layers of different criticality
to share CPU cycles increasing the system capacity to fit
more features. In this case, the lower criticality layer uses
these shared cycles (meeting its deadline) if no task τj in the
higher criticality layer exceeds its nominal execution time
Cj . This overbooking allows an efficient and safe resource
sharing across criticality layers. It is worth noting that both
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Figure 1. ZS-QRAM Layer Hierarchy

the layer isolation and the layer overbooking applies to both
the criticality and the utility layers.

The utility layer is also divided into multiple utility sub-
layers. However, in this case, each sub-layer is composed
of the set of task modes that are active at the sub-layer’s
marginal utility level. That is, each sub-layer represents a
QoS adjustment (implemented as a period degradation) at
each level of overload. Both criticality and utility layers are
depicted in Figure 1

It is worth noting that defense systems’ features are
generally classified as safety-critical and mission-critical.
This classification matches the semantics of the criticality
and utility layers of ZS-QRAM. Similarly, within the safety-
critical class, some features are more critical than others
demanding a different degree of certification suing standards
like the DO-178-B/C [6]. In particular, DO-178 describe
five Design Assurance Levels (A-E) that are assigned to
different features depending on the consequence of their
failure. This corresponds to how stringent a validation and
verification process must be applied. From a timing guar-
antee point-of-view, Vestal [8] observed that this relates to
the pessimism (safety-margin in DO-178 parlance) of the
worst-case execution time of the task(s) that execute the
particular feature. The layer isolation offered by ZS-QRAM
allows each layered to be evaluated disregarding any low-
criticality layer. Each layer needs to be considered at its own
safety margin and WCET (Co

i ). As lower-criticality layers
are verified and validated, the safety margins are reduced,
reducing in turn the WCET of higher-criticality layers (each
task in these layers is assume to run for Ci only) while
the current layer is assumed to run at its proper criticality
margin (each task τj in this layer is verified at Co

j ).
The utility layer extends the Design Assurance Level

concept beyond safety (that matches criticality) into mission
value. In this case, the adaptation is encoded into a task (or
feature) adaptation where the task is not dropped but instead
adapts to the available resources according to its mission
value.

A. Resource Sharing in a Layered System

Sharing resources in our layered architecture must be
properly supported to avoid violating layer guarantees. In
particular, in order to share a resource (e.g. shared data
structures) across tasks, some concurrency control needs
to be used. In these cases, locking protocols have been
designed for general-purpose computing, and for real-time
systems. In particular, the real-time locking protocols (e.g.

priority inheritance protocols [9]) are aimed at minimizing
the time that a low priority task can prevent a high-priority
task from executing, a.k.a. priority inversion. In mixed-
criticality systems two problems must be resolved. First, we
need to minimize not only the priority inversions, but also
the criticality inversions that can occur when resources are
shared across criticality layers. The Priority-and-Criticality
Inheritance Protocols [10] (PCIP) were designed for this
purpose. These protocols ensure that a low-criticality task
that holds a lock requested by a high-criticality task cannot
be stopped by any medium-criticality zero-slack enforce-
ment. The PCIP protocols also provide a schedulability test
that takes into consideration the wost-case blocking times
observed under these protocols.

Beyond schedulability, the job-stopping that happens in
the criticality layers can leave resources locked indefinitely
(if the lock owner is killed). As a result, when resource
sharing is used, priority demotion should be used instead of
job dropping. In this case, the priority of the target job is
demoted to a non-real-time priority and allowed to continue
on cycles not used by the real-time tasks. Additionally,
this strategy must be complemented with a deadline-miss
notification (say a signal handler) that warns the job of the
deadline miss so that it can take the appropriate actions like
releasing locks.

B. Criticality Layers in Multi-Core Processors

(a) Crit. Inv. (b) No Crit. Inv.

Figure 2. Criticality Inversion in Allocation

Multi-core processors bring new challenges to providing
isolation layers. In general, real-time scheduling for multi-
core processors can be divided into global scheduling, parti-
tioned scheduling and semi-partitioned. In global scheduling,
tasks are allowed to execute on any available core. In parti-
tioned scheduling, a task is allocated to a core at boot time
and is restricted to only execute on that processor. Finally,
in semi-partitioned scheduling, most tasks are restricted to
a single core while others are partitioned into two segments
with one running on one core and the other on another core.
In general, global scheduling can reach higher schedulable
utilization when combined with some proportional fairness
policy, i.e., ensuring that each task constantly receives a
portion of the processing cycles equal to their utilization.
However, global scheduling tend to be costly due to the
cost of migrating a task from one processor to another
(e.g. moving the cache content). In contrast, partitioned
scheduling tends to be more practical and simple to use,



but it may suffer from fragmentation cost due to unused
utilization of a processor (where no single task can fit).
However, in practice this fragmentation is rare and for safety
critical systems, the simplicity of a partitioned approach is
highly desirable. For this reason, we propose the use of
partition scheduling for layered mixed-criticality systems.

In partitioned scheduling of mixed-criticality systems, the
criticality inversion problem can arise at the task-allocation
level. A given allocation could favor a low-criticality task at
the expense of a high-criticality one. For instance, consider
three tasks τh1, τh2, and τl of high, high, and low criticality
respectively, each having a normal utilization Ci

Ti
of 40%

. Assuming we only have two processors P1 and P2, and
τh1 is already deployed on P1, and the three tasks do
not fit on P1 together, then we are forced to pack either
τh2 or τl on P1 and the other to P2. Packing τh1 and
τh2 together, and τl by itself is a possible task allocation
decision (see Figure 2(a)). In fact such an allocation decision
is commonly used in legacy systems that try to isolate
criticality levels. However, observe that such task allocation
leads to a criticality inversion problem. In this scenario,
if all the tasks overload, τh2 may miss its deadline but
τl will not i.e. our allocation decision protected τl (a low
criticality task) at the expense of τh2 (a high criticality task).
Conversely, deploying τh1 and τl together and τh2 by itself
removes this criticality inversion (see Figure 2(b)). Note that
using a criticality-aware uniprocessor scheduling algorithm
such as ZSRM will ensure that τl cannot steal cycles from
τh1 within processor P1 under overload scenarios.

In [11] we developed a mixed-criticality task allocation
algorithm called Compress-on-Overload Packing (COP) that
first allocates the highest-criticality tasks as if they were
running for its overloaded execution time Co

i . Once the
processors are full, it then recalculates the allocated utiliza-
tion of the processors as if the tasks were now running for
their nominal execution time Ci. Finally, the lower-criticality
tasks are packed “on top” of the previously allocated tasks.
It is worth noting that this scheme allocates the tasks in
criticality layers, from the highest to the lowest criticality.
This packing highlights the advantage of sharing resources
between low and high criticality tasks.

IV. OPEN ISSUES

Asymmetric protection for mixed-criticality systems
needs to be extended across other subsystems of the com-
puting platform to act as a comprehensive solution. Areas
currently not covered include: the Input-Output subsystems
including interrupts, DMA, and lower-level sensors and
actuations. In distributed systems, protection mechanisms for
network bandwidth would also be required. In the multi-
core arena, resources shared across cores such as cache
and memory banks require new mechanisms for asymmetric
temporal protection. Finally, the mixed-criticality synchro-
nization protocols need to be extended for multiprocessors

(and multicores).

V. CONCLUDING REMARKS

In this paper, we proposed the use of the asymmetric tem-
poral protection of ZS-QRAM to integrated mixed-criticality
CPS in a layered architecture. We presented the different
mechanisms that ZS-QRAM uses to build a hierarchy of
criticality layers and the advantages of this hierarchy for the
certification of these systems in the light of safety standards
like the DO-178C. In addition, we presented the mechanisms
to support resource sharing within and across criticality
layers. We discussed the criticality inversion problem in
partitioned multiprocessor scheduling and our allocation
algorithm designed to minimize it. Finally, we discussed
the open issues that need to be addressed in order to
provide a comprehensive solution. In the end, we believe that
the layered architecture presented here and the supporting
mechanisms provide a strong design platform for mixed-
criticality systems that is well aligned with the philosophy of
the certification authorities facing commercial and military
CPS.
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Abstract� Historic approaches to upgrading the capabilities of 

military aircraft by inserting new technologies have become so 

costly that warfighters may be forced to operate with less than 

current technology can deliver. Even inserting new upgrades 

alongside the legacy systems can be very expensive if it requires 

large modifications to legacy software, triggering extensive retest.  

A way to meet this challenge is to insert upgrades alongside 

legacy systems, virtually replacing old capabilities with new while 

leaving the old software in place.  This approach carries with it 

new challenges which might be met with analytic innovations.  

Keywords-component; incremental upgrade, embedded 

avionics, timing, specification, reuse, verification, validation, 

complexity 

I.  INTRODUCTION 

Increasingly, the lifetimes of military aircraft platforms are 
exceeding 40 years.  Modernization of the basic airframe in the 
form of better engines or strengthened components is a well-
understood practice. However, the industry must find new 
paths for upgrading software-provided capabilities.  Past 
approaches accomplished mission software and hardware 
upgrades by essentially removing the old components and 
replacing them with entirely new systems inserted 
into the existing airframe. Budget realities going 
forward make this an unaffordable model, making 
it essential to be able to continue to use some 
functions from the legacy system while inserting 
new or updated capabilities alongside 
them.  Accomplishing these incremental system 
upgrades challenges the analytical frameworks that 
defense contractors have relied on to date to ensure 
predictable, bounded integration times and costs, 
and to generate performance and deadline 
guarantees required for system acceptance. In this 
position paper, we outline the problem and point to 
specific challenges which we believe are key 
technologies required to meet them. 

II. MISSION AVIONICS UPGRADES: THE PAST 

Past approaches to mission avionics upgrades 
have followed a few general approaches. Figure 1 
shows a typical legacy mission avionics system, in 
which the primary software domains (Controls, 
Displays, Weapons, etc.) are distributed over a set 

of computing nodes; typically the nodes have nearly identical 
processing technology, with some differences to accommodate 
specialized I/O.  The domains usually have well-defined 
boundaries which often correspond to hardware boundaries, 
meaning that changes can be localized fairly narrowly.  The 
paper by Seeling [1] gives a fairly rare published detailed view 
of a specific avionics system in the context of reconfiguration 
options; most such system descriptions are not readily 
available. 

Over a period of 7-15 years after an aircraft has been 
introduced, the industry develops new technologies and 
enhanced capabilities which start appearing in new products, 
but which are not available in the older aircraft.  During this 
time, military customers create a body of experience and 
knowledge of how to use the aircraft in actual missions, and 
also discover functions which, if added to the aircraft, would 
make it better-suited to their needs.  The defense purchasing 
community and the aircraft manufacturers jointly identify a set 
of capabilities to be introduced, and create a procurement 
program which involves removing the existing mission 
avionics system and replacing it in toto with a newly-developed 
set of hardware and software.  While this new system almost 
always contains the same capabilities as the old software, these 

 
Figure 1.  Legacy missions avionics system 



functions may be expressed in new forms, and of course the 
new system has additional functions which were not present in 
the system. Since the end product is a complete replacement, 
there are few backward compatibility issues to be handled.  The 
new capabilities are typically well-crafted into the user 
interface, and in most respects the integration is not much 
harder than a complete new product would be. 

Procurement bodies and contractors have long recognized 
that this is not the most desirable scenario, and have proposed 
others.  The overriding concern, as noted by Duren [2] is to 
minimize  changes to existing software, since this incurs the 
greatest expense. One approach proposed by Luke et al., 
RePLACE, uses emulation to rehost legacy software 
unchanged on a newer, faster processor [3]. While this method 
lets the integrator continue to use old software without change, 
and provides the CPU power to support new functions, it was 
not primarily concerned with the issues involved in making the 
new work with the old.  An alternative to executing the legacy 
software unchanged is to simply port it in a functionally-
unchanged form to the new environment; an extreme example 
of this is discussed in Murray [4], where assembly language 
code for an obsolete processor is ported to the new system.  It 
is hard to imagine this scenario being affordable today. 

The primary obstacle to continuing to do wholesale system 
upgrades is that while it is easier in some ways, complete 
mission hardware and software replacements are very 
expensive; forecasts for defense spending seem to rule out most 
of these upgrades in the future.  The high cost also has another, 
even more important downfall: when capability upgrades are 
delayed for years or perhaps decades because of budget 
constraints, warfighters are faced with the prospect of having to 
conduct their missions with less capability than the technology 
would allow. 

III. MISSION AVIONICS UPGRADES: A POSSIBLE FUTURE

A great deal of the cost associated with the upgrade practice 
just discussed is the result of completely replacing all of the 
hardware and software systems.  In many cases, the old 
functions may have been sufficient even with new capability 
insertions, but the replacement approach rewrites that software 
so it can be hosted on the new hardware.  The cost escalates � � � � � � � � � � � 	 � � � � 
 � � � � �  
 � � � � 	 � � � � � � � � � � 
 � � � � � � 	 � � � 	 � � �
simply replace existing functions which were still adequate, 
must be exhaustively tested. 

Performing future upgrades could be made more affordable 
by carefully matching current capabilities against the desired 
capabilities and finding ways to keep those functions in the 
current system which still meet the new mission requirements. 
Leaving much of the current system in place and simply adding 
new software capabilities and hardware could eliminate a large 
part of the upgrade cost.  Figure 2 shows this scenario in the 
context of a proposed refresh of a radar subsystem; this is a 
fairly common replacement as radar hardware and a software 
technology advance, and represents a great increase in 
warfighter capability.  As shown, updating the radar involves 
accommodating the new temporal architecture the subsystem � 
 � 
 � � � 	 � � � � � � 	 � 
 � � � � � � � � � � � �  � � � � 
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en to 
bridge this difference.  Since the radar brings new capabilities 
which replace earlier functions dependent on the old radar 
subsystem, a new sequence of function calls or object method 
invocations is created on the inserted system which renders the 
earlier function void. In this proposed upgrade scenario, the old 
radar mission thread software is not removed from the legacy 
software; it is simply no longer exercised by any stimulus, 
rendering it virtually removed. 

The new capabilities are of course hosted on an updated 
computing node, which may have a different operating system 
and middleware, perhaps reused from a newer military aircraft 

 
Figure 2. Proposed more affordable upgrade practice 



program. This introduces the need to analytically demonstrate 
the harmony of fault logic and handling across the now-diverse 
architecture. 

IV. KEY CHALLENGE AREAS 

Moving from the costly historical upgrade practices to a 
future practice which leaves still-functional software in place, 
and which virtually removes unneeded code instead of  
modifying the source, presents several challenges, which we 
detail below. 

Temporal Architecture Differences The temporal 
architectures of the legacy and new functions may be vastly 
different.  This difference could be relatively easy to bridge, 
like an old cyclic execution rate of 50Hz vs. a rate of 75Hz in 
the new software.  However, the new software could be based 
on an event-driven paradigm which assumes immediate 
transmission of messages with an implied wait for response, 
such as a remote procedure call.  This kind of difference may 
require more careful analysis, or cause changes to some of the � � � � � � � 	 � � 
 � � � � � � � � 
 � � � � 	 � � � � 
 � � � � � � � � � � � � 
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deadlines. Thus, in some cases the new function might be able 
to be recast into the temporal vocabulary of the legacy 
behaviors, but whe

� � � � � � � �  � � � � � � � � 
 	 � � � � � � 	 � � �
components originally developed for some other system, it 
might be required to use the new functions as-is and somehow 
harmonize the different temporal architectures. 

Unused Code  The idea of leaving some legacy code in-
place while virtually turning off its execution is a novel one for 
military systems.  Current standards for safety- or mission-
critical applications call for physically removing all code that is 
not actually executed; a key enabler to an affordable 
increme

� � 	 � � � � � 	 � � 	 � � � � 	 � � � 
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exercised in the upgraded system while still leaving it in place 
in the legacy portion of the aircraft. 

Application Architecture and Design Styles  New 
applications likely employ different structuring approaches 
than legacy applications stemming from differences in 
programming languages, differences in computing resource 
constraints, and provisions for long term maintainability.  Such 
differences come into play when it is desired to re-use legacy 
application code in part, or integrate software components from 
different suppliers.  Reconciling differences can result in 
 � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � �  � � � � � � � � � � � � � � � 	 � � � � �
and new components. 

Communication Protocol Differences  Applications 
typically communicate across the avionics architecture using 
messages.  However, there can be great variety in the types and 
styles of communication and handshaking approaches used 
across different generations of applications.  Different schemes 
include:  Asynchronous unacknowledged messages, 
acknowledged delivery, remote procedure call (RPS), 
singlecast and multicast.  Client/server and subscription based 
approaches have also been used. 

Infrastructure Code and Support Services  Applications 
from different eras and suppliers often have different 
infrastructure software requirements and assumptions, 

including those related to: operating system, security 
requirements, support libraries, load and startup, and persistent 
data storage, and scheduling. 

Difference in Fault Tolerance Designs  Generally, there 
are fault tolerance and system reliability requirements levied on 
avionic systems.  Incremental upgrades need to be mindful of 
potential differences in fault detection, isolation, and response 
schemes.  Often, fault tolerant designs are based on 
assumptions established very early in the initial design.  
Sometimes, documentation of requirements and underlying 
assumptions is lacking, and this can introduce risk as new 
functionality is added.  Additionally, fault tolerance designs 
generally require full regression testing, even when the scope 
of intended design change is small and well known. 

Documentation Coverage and Quality The behaviors of 
the legacy system may be incompletely documented or � � � � � 
 � � � � � � � � 	 � � � � � � 	 � � � � � 
 � 
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 � 	 � 	 � � � � � � � 
 � � � � 	
functional perspective may be so entwined that it is difficult to 
find ways to virtually sever the legacy system into behaviors 
that will continue to be exercised in the upgraded system and 
those that will be replaced by newly inserted technology. 

V. CONCLUSIONS 

We present a potentially more affordable route for inserting 
technology upgrades into military aircraft. While this approach 
avoids replacing existing, still-functional software, it carries 
with it new challenges that require analytical methods yet to be 
developed and proven. As Table I shows, the gap between 
legacy hardware, software infrastructure, and application 
designs can be large.  

TABLE I.  HISTORIC VS. FUTURE UPGRADE SUMMARY 

 Legacy System Future System 

Processing 

hardware 

Single CPU per 
subsystem 

Military-specific 
instruction set 

Single- � � �  ! " # $ %  

Multiprocessor subsystems ! � & &  � � ' ( ) ! " # $ %
(suitably hardened) 

Multicore technology 

Operating 

systems 

Custom developed 

Fixed rate scheduling 

Timesliced temporal 
architecture 

Commercial high assurance 
RTOS 

Mix of rate- and event-

based processes 

Preemptive priority based 
scheduling 

Networks Custom or military 

standard 

Commercial off-the-shelf 

Applications High degree of 
hardware dependency 

Minimal dependencies 
between applications 

Functionally 
constrained by 

computing resources, 
high complexity 

solutions 

Hardware independent 

Increased 
interdependencies between 
software functions 

More complex capabilities 
by leveraging increased 

hardware resources 

 



Upgrade scenarios which attempt to maintain large portions 
of the existing software in an untouched state while virtually 
replacing their capabilities presents multiple specific problems 
related to identifying and limiting the scope of changes, 
demonstrating the virtual excision of legacy functions without 
source code changes, and accommodating new computing 
architectures side-by-side. 
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