Online Construction of Analytical Prediction Models for Physical Environments: Application to Traffic Scene Modeling

Anurag Umbarkar, Shreyas K Rajagopal and Alex Doboli

Department of Electrical and Computer Engineering State University of New York, Stony Brook, NY 11794 Email: adoboli@ece.sunysb.edu

Presentation Outline

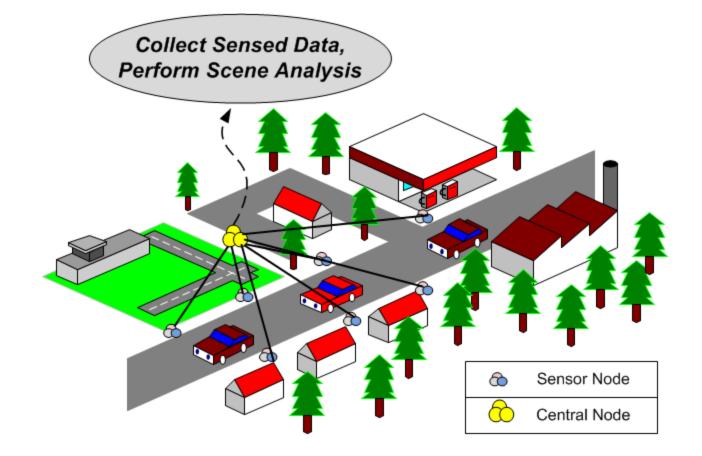
- Introduction
- Main Challenges
- Problem Description
- Modeling Methodology
- Experimental Results
- Conclusions

Introduction

- Cyber Physical Systems are distributed systems-ofsystems that perform reliable data acquisition in order to build efficient data models.
- Modeling natural environments vs engineered systems
- These models can be used for monitoring, tracking and predicting the dynamics of the physical phenomenon
- Data models aid decision-making procedures under resource constraints.

Introduction

• Example: Traffic Scene Modeling



Main Challenges

Incomplete sensing

Algorithmic limitations

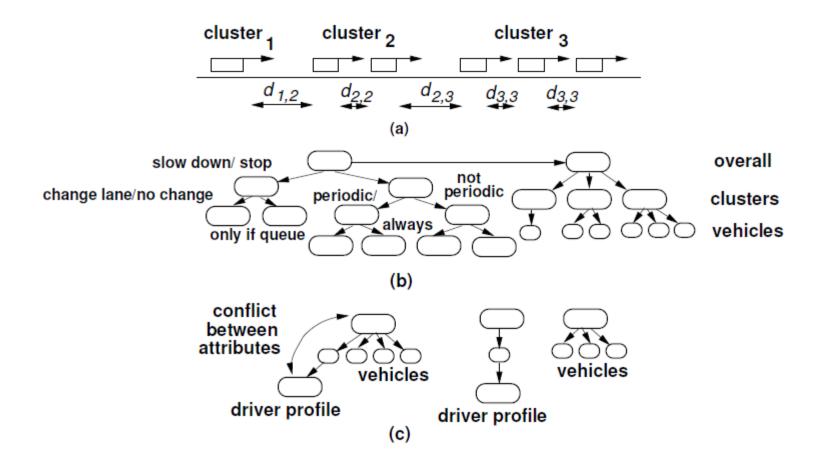
Human and social dimension

Problem Description

- Finding components of a scene
- Understanding the relations between components in a scene
 - Insight into cause of existing relations
 - Disambiguation
- Predicting the evolution of a scene

Problem Description

Example: Simple traffic situation



Modeling Methodology

 Constructing ontology description for vehicular traffic applications

Constructing traffic scene representation

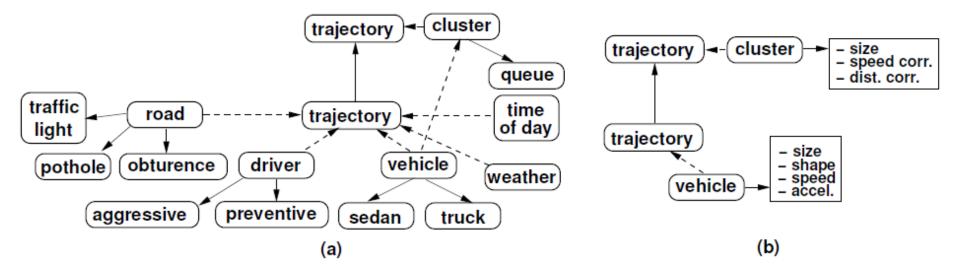
Predicting traffic dynamics

Ontology Description

- Concepts
- Attributes
- Basic Semantic Elements:
 - Vehicle attributes
 - Driver's driving profile
 - Cluster of vehicles
 - Cluster attributes
 - Cluster-level, social behavior
 - Cluster dynamics
 - Road conditions
 - Weather conditions

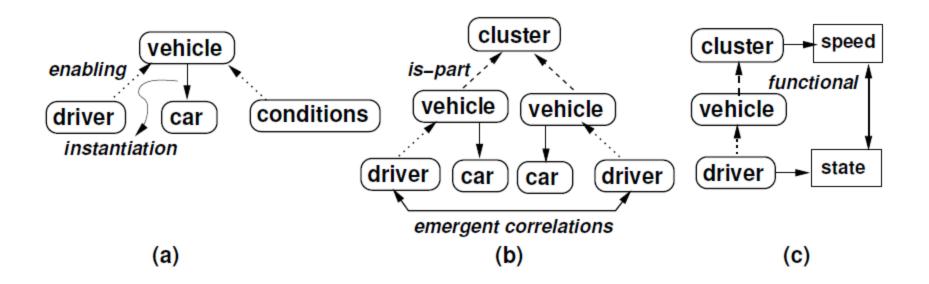
Ontology Description

Example: Simple ontology for traffic applications

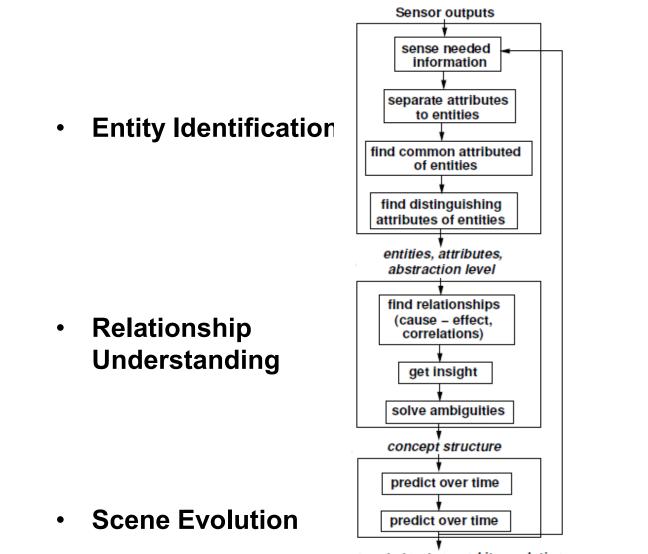


Ontology Description

- Relations in ontologies for traffic applications
 - Enabling relation
 - Is-part relation



Traffic Scene Representation

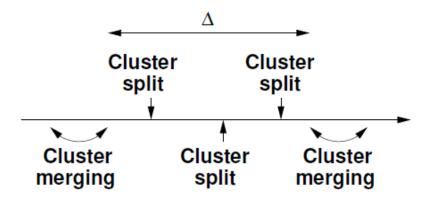


concept structure and its evolution

Predicting traffic dynamics

```
while (events are possible) {
event = select next event;
time = expected time of event;
S = set of clusters that could participate to event;
for (all consecutive pairs i, j in set S) {
  for (all speed vi of cluster i) {
    for (all speed vj of cluster j) {
      if (vi < vj) {
        p = probability of merging Cvi and Cv;
        if (p > pthresh) {
          T = time of merging event of Cvi and Cvj;
          add new splitting events at time Tj and with probability p;
          for (all speed vii < vi)
            Tii = time of splitting Cvi for speed vii;
            add new event at time Tii and with probability p;
          for (all speed vjj < vj) {</pre>
            Tjj = time of splitting Cvj for speed vjj;
            add new event at time Tjj and with probability p;
```

Predicting traffic dynamics



• Time of separation $t_{split,C_I,C_{I_1},C_{I_2}} = \frac{D_{Lim}}{v_j - v_{C_I}} + t_r$

$$t_r = \frac{1}{p(C_I, C_{I,1}, C_{I,2})} t_{r0}$$

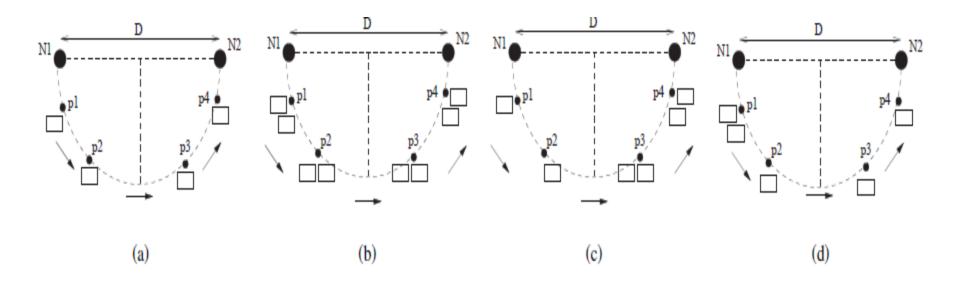
• Time of merging

where,

$$t_{merging,C_1,C_2} = \frac{D_{1,2}}{|v_{C,2} - v_{C,1}|}$$

Experimental Results

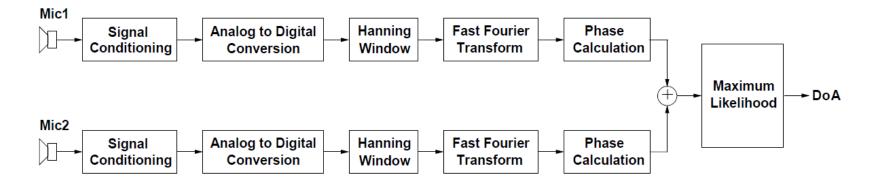
- Experiments with six scenarios:
 - Single vehicle: Good/Bad driving conditions
 - Cluster of vehicles: Good/Bad driving conditions
 - A vehicle joining a cluster
 - A vehicle splitting from a cluster



Experimental Results

• Extract scene elements:

Sound Sensing and Localization



– SVM-based Clustering

Experimental Results

Spatial Coordinates extracted from DoA estimates

		Position 1		Position 2		Position 3		Position 4	
		Х	Y	Х	Y	Х	Y	Х	Y
CS1	V1	4.07	52.68	14.30	67.77	34.14	60.32	54.25	49.53
CS2	V 1	6.14	47.14	14.26	67.58	38.41	59.35	55.88	47.04
	V2	22.44	60.31	26.26	72.89	52.31	57.47	69.92	39.87
CS3	V 1	4.37	47.87	15.08	66.85	35.12	63.08	55.88	47.04
	V 2	12.40	58.76	22.73	66.32	42.78	57.58	64.43	41.19
	V 3	21.19	61.84	27.60	74.16	51.05	53.97	70.31	40.09

- Sources of Error in Experimental setup, sound source
- Clustering accuracy: 87.5%
- Classification accuracy: 100%

Conclusions

- The proposed methodology models the dynamics of traffic scenes, including the participating vehicles, vehicle clusters, attributes and relations of all scene elements, and related events, like cluster merging and splitting.
- The main steps of the methodology find the elements of a scene, identify the relations among the elements, and construct analytical prediction models for the traffic scene dynamics.
- Compared to other methods, this methodology constructs the models online using data from embedded sensors.

Questions? Comments?