
Challenges in
Model-Based

Simulation
Walid Taha and Robert Cartwright

Halmstad University, Halmstad,Sweden
Rice University, Houston, Texas

Precise Simulation is the Future

• CPS is now well-established, but only dimly understood by
most information technologists

• Manifestation of ubiquitous computing [1988]

• CPS innovation is much harder and more interesting than
mere software innovation; CPS transcends the digital vision of
IT futurists.

• CPS modeling can be viewed as an ambitious and particularly
challenging form of program design provided:
– framework accommodates physical components
– computational model supports real numbers

Remainder of Talk

• Traditional floating-point computation
– IEEE standard
– 32 bit -> 64 bit -? 128 bit

• Basic properties of rationals and real
numbers

• Interval arithmetic

• Exact real arithmetic

Floating Point Numbers

What should every software/CPS developer know about floating point arithmetic?
● Floating point is scientific notation with fixed number of digits in the fraction and

bound on the minimum and maximum exponents.
● Floating point numbers ≠ Real numbers

 The set of “double-precision” floating point number is finite.
 Nearly every arithmetic operation involves rounding.

● Floating point representation gives NO bound on accumulated rounding error
● Error bounds on floating point (numerical) algorithms are typically weak and

unstated. Many methods introduce discretization error.
● Choosing numerical methods is an art.
● Universal numerical (floating point) algorithms would help but may be

unattainable.

Properties of Floating Point Arithmetic

● In real arithmetic

 1040 + 20 - 10 - 1040 = 10
● In double precision IEEE arithmetic

 1040 + 20 - 10 - 1040 = 0.
● Even worse, graphing the polynominal

in MatLab (by Cleve Moler in MATLAB)

x7-7x6+21x5-35x4+35x3-21x2+7x-1

yields the figure in black to the right
● Good numerical software for a

particular problem typically avoids these pathologies.

Challenges
● Incorporating support for higher precision floating point arithmetic in new

processors

 IEEE standard for single and double precision floating point arithmetic has
made numerical software more portable and more accurate, but given the
number of transistors on modern chips, quad (128 bit) precision should be
standard.

 Some hardware support (microcode?) for the efficient implementation of
higher precision arithmetic would be even better.

● Improved support for accurate floating point arithmetic in higher level
languages. Java does not support directed rounding; it should.

Properties of Rational and Real Numbers

● Rationals
 pairs of unbounded integers
 countably infinite set
 grow very fast
 not closed under most library functions (sqrt, sin, cos)

● Reals
 closed under standard library functions (few exceptions)
 no finite canonical representations
 common infinite representations are not canonical
 stream representations are subtle; redundancy required
 uncountably infinite set

Challenges
● Floating point numbers are rational, but not all rational numbers

(even when bounded in size) can be represented exactly as floating
point numbers. Rationals generally correspond to real numbers with
infinite repeating radix representations:
 Is there an enhanced form of floating point arithmetic that better

supports rationals?

 How does it compare with higher-precision floating point?

● To what extent can a computer support exact computation with real
numbers?

Interval Arithmetic
● A real number x is represented by an interval [x',x''] where x' ≤ x ≤ x'' and x',

x'' are

rationals. Interval arithmetic is the most widely used self-validated computation model.
● In practice, representing x' and x'' as floating point numbers facilitates much better

performance, but rounding must be directed.
● Extending basic arithmetic to intervals is easy, but comparison operations may be

indeterminate, e.g., [1,2] < [1.5, 2.5], which is treated as an aborting error.

● Interval arithmetic often over-estimates the error, but it particularly misses
canceling dependencies, e.g., x – x where x is bound to an interval [a,b]
where a < b. Then x - x = [a – b, b – a] rather than 0.

● The results of computations that use the values of variables more than once
can be improved by splitting the interval into two equal pieces, doing the
computation for each piece and taking the union of the results.

Interval Arithmetic cont.
● Splitting example: x – x where x = [-1, 1].

 Without splitting, x – x = [-2, 2].
 With splitting at 0, we get x – x = [-1, 1] because the result is
[-1, 1] if x = [0, 1] and [-1, 1] if x = [-1, 0].

 Through repeated splitting, the interval result for x-x can be
made as small as desired (> 0).

● Many interval analysis algorithms perform repeated interval
splitting until a particular error bound is achieved; these
algorithms are similar in character to adaptive quadrature.

Challenges
● Are there good strategies for combining splitting and higher precision?

● More elaborate models that propagate correlation information like affine
arithmetic exist. They are much more complex to implement and have
been less widely used. What are the trade-offs between interval arithmetic
and more elaborate alternatives?

● Self-validated computation models could play a very important role in
precise CPS simulation, but this research area has received comparatively
little attention among researchers in numerical computation.

Exact Real Arithmetic
● A countable subset of the reals called the constructive reals can be implemented on the

computer. Moreover, every real number with a computable radix expansion is
constructive. The constructive reals form a countable subset of the real numbers. But:

 Radix representations require redundancy (more digit values than the base).
Example: add 0.44444 … and 0.55555 In the computed result, what is the
value of the digit preceding the decimal point?

 Comparison (<=) diverges if the two numbers are equal.
 The overhead involved in computing with exact reals is very large. Constructive real

number can be represented in a variety of ways: as a lazy stream of digits, as an
lazy continued fraction, or as a computable function from rational tolerances to
rational approximations. Other representations are possible. On intriguing scheme
might be to use iterated interval arithmetic, doubling the floating point precision on
each iteration.

Challenges
● Can parallelism (multi-core, many-core, distributed memory) be used to

effectively speed up exact real computation in general?

● Exact real arithmetic potentially eliminates round-off error. But what about
discretization error? Can we bound it? Enclosure methods try to do this.

Summary
● Accurately simulating physical components is the new frontier for

computing research
● The CPS design process is amenable to the same hierarchical approach to

system development as software provided we can develop satisfactory
simulation frameworks for physical components.

● Advanced approaches to supporting accurate computation involving real
numbers are still in their infancy and we do not yet know what approaches
will be most practical.

● More interdisciplinary cooperation between hardware designers, language
researchers and CPS researchers would be very helpful.

	Slide 1
	Precise Simulation is the Future
	Remainder of Talk
	Floating Point Numbers
	Properties of Floating Point
	Challenges
	Properties of Real Numbers
	Challenges
	Interval Arithmetic
	Slide 10
	Challenges
	Exact Real Arithmetic
	Challenges
	Summary

