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Trend: Complexity
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 Increasing number of software components

 Increasing resource sharing, due to SWaP constraints

« Existing techniques: inefficient, pessimistic

* Need a scalable analysis and resource-efficient design
Penn
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Approach: Compositional design

Design and analyze compositionally via interfaces

— Break the problem down into smaller problems
— Perform the design and analysis locally

— Create an interface that abstracts away details and exposes only the key
properties
— Reason about the composition of interfaces during system integration

Traditional focus: functional and behavioral aspects
— e.g., AADL interfaces

CPS: Need abstraction of timing and resource aspects
— CPS components manage their own resources

Idea: Compositional scheduling and timing analysis via
resource-aware interfaces
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Compositional Analysis
via Resource-Aware Interfaces

A brief introduction
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CPS component

 Workload

— Primitive component: real-time tasks, e.g., periodic tasks
— Composite component: smaller components, or components + tasks

« Scheduling algorithm: any existing algorithms, e.g.,
— Earliest deadline first (EDF), global EDF (gEDF) for multicore
» Active job with the earliest absolute deadline is executed

— Fixed-priority, e.g., Deadline monotonic (DM), gDM for multicore
« Active job with the smallest relative deadline is executed

* In general: component’s resource demand depends on both
the workload and the scheduling algorithm
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Resource-aware interface

* An abstraction of timing and resource aspects

— Captures the minimum amount of resource supply must be given to
the component to ensure its schedulability

— A component is schedulable if its interface is satisfied!

 How to represent an interface?
— Using an interface model
— Example: Explicit Deadline Periodic (EDP) : (I1, ®, A)
» provides a budget of ® resource units within a deadline A in each period I1
* resource bandwidth = G/I1

 How to compute the interface?
— Intuition: Based on component schedulability test

— Example: An interface J can feasibly schedule all tasks of C under
EDF iff its resource supply = total resource demand of the tasks
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Example: ARINC 653
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Example: ARINC 653

Questions:

« Timing analysis: Given a hardware, is the system
schedulable (i.e., all tasks meet their deadlines)?

« Resource dimension: What is the minimum amount of

resource must be provided to each partition (the system)
to guarantee its schedulability?
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Compositional analysis overview

Core module hardware
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Compositional analysis overview

Core module hardware
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Compositional analysis overview

Core module hardware

Interface of the system
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Compositional analysis overview

Core module hardware

Interface of the system

The system interface and partitions’ interfaces
can now be used to answer the two analysis
questions earlier!

I EEEEEEEE——————.
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State of the art

 Lots of existing work

— a wide range of interface models and interface computation methods
have been developed
» see the paper for an incomplete list...

— tools and implementations are available
* e.g., CARTS, RTCToolbox, RT-Xen

« Many benefits
— Enable efficient timing analysis of complex systems
— Improve resource use efficiency
— Can be used to perform resource dimensioning

— Enable efficient integration and isolation of independently-developed
cyber-physical components

 But...
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We are not there yet!

 Existing theory has many limitations, e.g.,
a) assumes unrealistic platforms, e.g., without overhead

b) ignores semantics of interactions between the cyber and
the physical aspects

 Result: Unsafe behavior!

a) interfaces underestimate actual resource needs, leading
to tasks missing their deadlines!
b) undesirable component interactions via shared actuators

* e.g., unintended simultaneous control of the steering shaft by the
collision avoidance and lane centering control components

Penn 14
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Existing compositional analysis
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Existing analysis: Unsafe!
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Outline

 Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion
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Outline

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion
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Scenario #1: Task release delay

* Each job is released using an interrupt service
routine (ISR)

* |ISRs are typically serviced as soon as they are
triggered

* Processing ISRs takes time!

— e.g., up to 0.014ms to release a job on a Dell Optiplex-
980 quad-core processor that runs LIMUSRT

 Results:

— Task execution will be delayed!

— Overhead can accumulate if more jobs need to be
released one after another
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Scenario #1: Task release delay

uniprocessor
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Scenario #1: Task release delay

uniprocessor
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« Existing theory: zero release delay

* |n practice: release delay > 0
— Each job is released using an ISR

— When all tasks are released ¢ time units
one after another: all 51 ISRs will be
released first!
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Strawman Solution #1:

Inflate task WCET with an ISR

uniprocessor
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uniprocessor

(5,4.54, 4.54)

(5,4,5) (10,1.02,10) (5,4.02,5) (10,1.04,10)
e’=e+Ar
ﬁ | VCPU, |
Are'=0.02
T,=(5,4,5) T,=(500, 1, 500) T,=(5,4.02,5) T,=(500,1.02,500)
T,=T3=...=Tg T,=T3=..=Tg,

Time unit: ms
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Strawman Solution #1:

Inflate task WCET with an ISR

Unsafe!

Schedulable in theory but not in practice

T,=(5,4,5) T,=(500, 1, 500) T',=(5,4.02,5) T,=(500,1.02, 500)

. . T2=T3=...=T51 T2=T3=...=T51
Time unit: ms
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Strawman Solution #2:

Inflate task WCET with all ISRs?

e’'=e+nAr
— n: number of tasks in the whole system

Safe, but...

Impossible to obtain n

— The task information within one component is hidden
from another component

Also, overly pessimistic
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Scenario #2: Cache interference

{ core, core, core; core, J

gEDF with a dedicated core
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- o
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« Overhead due to cache misses depends on not only the interference
between tasks but also the interference between VCPUs and between
VCPUs and tasks
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Example: VCPU preemption
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Example: VCPU preemption
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Example: VCPU preemption
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Example: VCPU preemption
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Example: VCPU preemption

T, finishes = T, resumes
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Approach: Overhead-aware analysis

 |ncorporate platform overhead into components’
iInterfaces and schedulability test

* Inflatable overhead

— Examples: schedule function, context switch, tick, cache
miss due to intra-component task preemption/migration

— Accounted by inflating each task's WCET

 Non-inflatable overhead

— Examples: release ISR delay, cache-related overhead
due to VCPU preemption or completion

— Expose the combined overhead experienced by a
component on its interface

Penn
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Release ISR overhead accounting

[RTAS’13]
* Approach: Model overhead caused by ISRs

— Using a compositional scheduling analogy

. . R
— ISRs: higher-priority intra-component
— Workload: lower-priority component

T
— Scheduled under Fixed Priority Risr d

VR’
. TP release o
Intuition: | oy ‘ ‘ W I

— The effective resource given to the tasks higher-priority  lower-priority

is the remaining resource after processing
the higher-priority release ISRs component

Penn 31
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Overhead-aware comp. analysis

* Primitive component transformation
— Step #1: Add a higher-priority release ISRs component
— Step #2: Inflate the WCETs of tasks with inflatable overhead

higher-priority } lower-priority higher-priority } lower-priority

4 N\ 4 N\ [ I a N\ [ )

H1
@ FCFS EDF #2 FCFS EDF

||‘ Q ||» Q

T, - T, ISR, --- ISR T, - T SR.. - ISR T T

U Y, . J ") N ")

C Release ISRs C Release ISRs inflated C’
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Overhead-aware comp. analysis

* Primitive component transformation
* |Interface abstraction

— Abstract each component into an interface

higher-priority } lower-priority

(- )

Zisr

N/

Release ISRs
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Overhead-aware comp. analysis

* Primitive component transformation
* |Interface abstraction

— Abstract each component into an interface

— Overhead-aware interface of C: (Zisr, Zcr )
4 N [ )
Lisr Lo
. AN

\\\
S~
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Overhead-aware comp. analysis

* Primitive component transformation
* Interface abstraction

- Interface composition s .
E <Z|SR1,IC/1> (Tisry- L1 )
e N D
AN J /
\\\ ,;

e e  ————————————————— —— — — .

Composite component C
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Overhead-aware compositional
analysis on multi-core

« Cache-aware: Tomorrow’s talk!

* Open questions
— Complex cache hierarchy with shared cache

— Improvement of schedulability analysis under
multicore scheduling (e.g., global EDF)

— Global optimal interfaces
— Cache control to reduce interference

Penn
Engineering © 2013 L inh T.X. Phan — Towards a Safe Compos itional Scheduling Theory for CPS

36



Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion
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Control application A Control application B Non-control apps

—» Sensor —» Controller = Actuator —» — Sensor —» Controller = Actuator —»

end-to-end deadline d, end-to-end deadline dg

~ N N
@ O
ECU1 BUS ECU2 ECU2 BUS ECU1 ECUL ECU2

_________________________

to other subsystems

Scenario: Automotive applications
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end-to-end deadline d, end-to-end deadline dg

a—0—0 u—Q—

ECU1 BUS ECU2 ECU2 BUS ECU1 ECU1 ECU2
ECU1 BUS
high-prioritVOW'Pf iority Non-preemptive

ke FP

Scenario: Automotive applications
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Existing compositional theory

« Assume all tasks are independent
* Assume the deadline of each task is given
» Result:

Ca n n Ot be d i re Ctl y a p p I i ed ! high-priorityow-priority
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Challenge #1: Deadline correlation

Larger deadline for A, mmp Smaller C1’s interface bandwidth

i Smaller ECU1’s frequency
Smaller deadline for A, ECUL BUS
high-priorityow-priority Non-preemptive

Larger C2’s interface bandwidth - PP

Larger ECUZ2’s frequency

high-priorityow-priority
50—
end-to-end deadline d, end-to-end deadline d,
Penn 41

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Challenge #2: Cyclic dependency

Interface of C1? - Input data of B,

Resource supply to C1 Output data of B,

‘ ECU1 BUS
t high-priority

low-priority

Non-preemptive

Output data of A; Resource supply to C2 - Fp

g L

Input data of A, ‘ Interface of C2

o4 g0

end-to-end deadline d, end-to-end deadline d,
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Approach: Deadline decomposition

- Advantages: Existing compositional theory can be used
— Existing deadline decomposition methods need to be extended!

« What is a meaningful notion of interface optimality?
— ldea: use a partial order of resource use

* How to capture interactions between |/O composition via data
dependence and hierarchical composition via scheduling?

— ldea: combine assume/guarantee interfaces with
compositional schedulability analysis

« How to tackle complexity due to data dependence?
— ldea: transform arrival patterns of input/output data to restricted
forms (e.g., periodic) while preserving end-to-end timing properties

— Approach: adapt synchronization protocols and/or shaping
techniques

Penn 43
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Approach: Parametric interfaces

 Basic idea

— Interface: a function of variables representing unknown
tasks’ parameters (e.g., local deadlines)

— Symbolic computation of interfaces

— Concrete interfaces are realized at the top level based on
end-to-end timing constraints

« Advantage: accuracy!

« Challenge: the size of composed interface grows
with more composition steps

— ldea: refine intermediate interfaces based on safe
approximations of the functions

Penn 44
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Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level models
— Safety-aware interfaces

 Conclusion
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The modeling gap

* High-level models of computation
— Ex: timed automata, I/O automata, process algebra

— Focus on high-level specifications of timed interactions,
communications, synchronization

— Ignore platform aspects, e.g., communication/scheduling
delay

* Real-time task/resource models
— EXx: periodic, concurrent task models, Real-Time Calculus

— Focus on implementation-level information, e.g.,
execution time, deadline, resource sharing semantics

— Do not consider high-level semantics, e.g.,
synchronization, time-dependent behavior

Penn
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Example: Infusion pump

Istencearm! - Abstract model
. N N — captures the software behavior
Idle > arm
LevelTwoAl ? I
_ bt independently of the target platform
PP BolusFinish? — makes implicit assumptions, e.g.,
/ BolusReq? v / BOIUSPrOCT’i@i « synchronous communication is instantaneous
\ [Bolusstartt\ ¥ A4S - processing takes zero time
N L. |_fRaisealarm!
B \\ vl Patient BolusReq!
LevelTwoAlarm? (sender) A g
Infusion /RaiseAlarm!
x<10

(partial) timed automation model
of infusion pump software

« Platform and task models

— ignores time-dependent behavior
* e.g., alarm raised after 10 time units of

infusion
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Example: Infusion pump

Istencenirm! » Abstract model
" /\ . — captures the software behavior
e o™ independently of the target platform
U [ BolusFinish? / / — makes implicit assumptions, e.g.,
7~ ) /BolusProcessed' v e A e e Dt e e

,f—\

' The implemented system is unsafe, even if
« system properties are verified at the high-level model
 the system is schedulable at the platform level

 Platform and task models

— ignores time-dependent behavior

* e.g., alarm raised after 10 time units of
. . Bolus-Request
infusion button

ifeCare PCA
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Bridging the gap

« Several existing approaches can serve as basis, e.g.,

— Adding platform aspects to high-level models

* e.g., new timed-automata semantics (almost ASAP, time-triggered,
sampling-based, probabilistic, etc.)

— Combining scheduling with high-level models
* e.g., TIMES tool, resource-based process algebra

— Automata- and actor-oriented scheduling interfaces

* However, existing work is expensive in timing analysis and
assumes very simplistic platforms
— Need more efficient approaches!

* Idea: use a glue-layer that connects both classes of models
— Captures assumptions high-level models make about the platform

— Can be used to mechanically verify that a given platform satisfies the
assumptions

— Our very initial work: RSP’12, CASES’13
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Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces
— Clock synchronization
— Analyzing state-based systems

 Conclusion
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Conclusion

» Cyber-physical systems are increasingly complex

— Need accurate and scalable analysis and design

« Compositional approach is an effective method
— Can handle complexity
— Can help optimize resources

* Many interesting open challenges remain

— This talk: some important challenges towards a safe
compositional scheduling and timing analysis

— Research opportunities for you!!

linhphan@cis.upenn.edu
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