AVICPS Workshop — December 2013

Towards a Safe Compositional
Scheduling Theory for CPS

Linh Thi Xuan Phan

University of Pennsylvania

"y

p-w Penn

@ Engineering



Trend: Complexity

FlexRay Backbone _ Diagnostic
~ Connection
Powertrain / Chassis Driver Information Body . .
Gateway Gateway Gateway 70 to 100 electronic control units (ECUs)
FlexRay / CAN CAN/ MOST /IDB1394 | CAN /LIN
/ 2000 to 3000 software functions
éb Engine Control — Dashboard - Comfort Electronics
[ ; [~ £
. ¢ 5 Chassis Bocroni | m:m%w\‘ —> Climate Control
v 4 \ | Door Module
. \ -‘ /J
B J::‘W'}g\m —> Roof Module

N -
—» Brake-by-Wire

> Headup Display +—> Lighting
=g . '

 Increasing number of software components

 Increasing resource sharing, due to SWaP constraints

« Existing techniques: inefficient, pessimistic

* Need a scalable analysis and resource-efficient design
Penn

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Approach: Compositional design

Design and analyze compositionally via interfaces

— Break the problem down into smaller problems
— Perform the design and analysis locally

— Create an interface that abstracts away details and exposes only the key
properties
— Reason about the composition of interfaces during system integration

Traditional focus: functional and behavioral aspects
— e.g., AADL interfaces

CPS: Need abstraction of timing and resource aspects
— CPS components manage their own resources

Idea: Compositional scheduling and timing analysis via
resource-aware interfaces

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Compositional Analysis
via Resource-Aware Interfaces

A brief introduction

Penn
Engineering © 2013 L inh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



CPS component

 Workload

— Primitive component: real-time tasks, e.g., periodic tasks
— Composite component: smaller components, or components + tasks

« Scheduling algorithm: any existing algorithms, e.g.,
— Earliest deadline first (EDF), global EDF (gEDF) for multicore
» Active job with the earliest absolute deadline is executed

— Fixed-priority, e.g., Deadline monotonic (DM), gDM for multicore
« Active job with the smallest relative deadline is executed

* In general: component’s resource demand depends on both
the workload and the scheduling algorithm

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Resource-aware interface

* An abstraction of timing and resource aspects

— Captures the minimum amount of resource supply must be given to
the component to ensure its schedulability

— A component is schedulable if its interface is satisfied!

 How to represent an interface?
— Using an interface model
— Example: Explicit Deadline Periodic (EDP) : (I1, ®, A)
» provides a budget of ® resource units within a deadline A in each period I1
* resource bandwidth = G/I1

 How to compute the interface?
— Intuition: Based on component schedulability test

— Example: An interface J can feasibly schedule all tasks of C under
EDF iff its resource supply = total resource demand of the tasks

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 6



Example: ARINC 653

- -
~~~~~~
- ~

DM
Primitive

component

!
4 N R - N

eor o e

Composite component

Pig - lel Py - I:)Zmz Poy ann

\_ 2N / N e
Partition 1 Partition 2 Partition n

S
S
~.,

e

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Example: ARINC 653

Questions:

« Timing analysis: Given a hardware, is the system
schedulable (i.e., all tasks meet their deadlines)?

« Resource dimension: What is the minimum amount of

resource must be provided to each partition (the system)
to guarantee its schedulability?

I'CIl
@ Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Compositional analysis overview

Core module hardware

~~~~~~
- ~.
- ~
- s
- S

S

Interface of Interface of .. Interface of
Partition 1 Partition 2 Partition n
Partition 1 Partition 2 Partition n /

s
.
< -
e -

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Compositional analysis overview

Core module hardware

- -
~~~~~~
- A

™

‘ Virtual-CPUs ‘ ‘ Virtual-CPUs ‘ ‘ Virtual-CPUs

VCPU: (Period, Budget, Deadline)
VCPU: (Period, Budget), if Deadline = Period
VCPU Bandwidth = Budget/Period

S,
\\\\\
~~~~~~

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Compositional analysis overview

Core module hardware

Interface of the system

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

11



Compositional analysis overview

Core module hardware

Interface of the system

The system interface and partitions’ interfaces
can now be used to answer the two analysis
questions earlier!

I EEEEEEEE——————.

Penn 12

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



State of the art

 Lots of existing work

— a wide range of interface models and interface computation methods
have been developed
» see the paper for an incomplete list...

— tools and implementations are available
* e.g., CARTS, RTCToolbox, RT-Xen

« Many benefits
— Enable efficient timing analysis of complex systems
— Improve resource use efficiency
— Can be used to perform resource dimensioning

— Enable efficient integration and isolation of independently-developed
cyber-physical components

 But...

Penn 13

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



We are not there yet!

 Existing theory has many limitations, e.g.,
a) assumes unrealistic platforms, e.g., without overhead

b) ignores semantics of interactions between the cyber and
the physical aspects

 Result: Unsafe behavior!

a) interfaces underestimate actual resource needs, leading
to tasks missing their deadlines!
b) undesirable component interactions via shared actuators

* e.g., unintended simultaneous control of the steering shaft by the
collision avoidance and lane centering control components

Penn 14

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Existing compositional analysis

v
)
a)

All tasks miss their deadlines in reality.

But, theory claims all are schedulable! thbory
0.6 E
0.5 |
04 |
0.3 :
02 i
0.1 I
0

practice

Fraction of schedulab

0.1 02 03 04 05 06 07
Task set utilization

Fraction of schedulable task sets vs. workload utilization

Existing analysis: Unsafe!

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Outline

 Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

16



Outline

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

17



Scenario #1: Task release delay

* Each job is released using an interrupt service
routine (ISR)

* |ISRs are typically serviced as soon as they are
triggered

* Processing ISRs takes time!

— e.g., up to 0.014ms to release a job on a Dell Optiplex-
980 quad-core processor that runs LIMUSRT

 Results:

— Task execution will be delayed!

— Overhead can accumulate if more jobs need to be
released one after another

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

18



Scenario #1: Task release delay

uniprocessor

t

| VCPU, |(5, 4.51,4.51)

(10,1.02,10)

T,=(5,4,5) T,=(500, 1, 500)

T,=T3=...=Tg

Penn.
Engineering

comm |,

C, |

—

0

1

2

3

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

4

5

6

>

v

« Existing theory: zero release delay

19



Scenario #1: Task release delay

uniprocessor

1

VCPU,

(5,4.51, 4.51)

(5,4,5) %0,1.02,10)

VCPU,

VCPU,

T1= (5, 4,5)

Penn.
Engineering

T,=(500, 1, 500)

T2= T3= [ XX ] = T51

« Existing theory: zero release delay

* |n practice: release delay > 0
— Each job is released using an ISR

— When all tasks are released ¢ time units
one after another: all 51 ISRs will be
released first!

suiss N

Deadline missed!
C, |

O 1 2 3 4 5 6
T,’s deadline

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

20



Strawman Solution #1:

Inflate task WCET with an ISR

uniprocessor

VCPU,|(5, 4.51, 4.51)

uniprocessor

(5,4.54, 4.54)

(5,4,5) (10,1.02,10) (5,4.02,5) (10,1.04,10)
e’=e+Ar
ﬁ | VCPU, |
Are'=0.02
T,=(5,4,5) T,=(500, 1, 500) T,=(5,4.02,5) T,=(500,1.02,500)
T,=T3=...=Tg T,=T3=..=Tg,

Time unit: ms

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

21



Strawman Solution #1:

Inflate task WCET with an ISR

Unsafe!

Schedulable in theory but not in practice

T,=(5,4,5) T,=(500, 1, 500) T',=(5,4.02,5) T,=(500,1.02, 500)

. . T2=T3=...=T51 T2=T3=...=T51
Time unit: ms

Penn 29

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Strawman Solution #2:

Inflate task WCET with all ISRs?

e’'=e+nAr
— n: number of tasks in the whole system

Safe, but...

Impossible to obtain n

— The task information within one component is hidden
from another component

Also, overly pessimistic

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

23



Scenario #2: Cache interference

{ core, core, core; core, J

gEDF with a dedicated core
for each bandwidth-1 VCPU @

VCPU, VCPU, | VCPU, vepy,|  vepu, | € Virtual CPUs

/% /—Tﬁ /—Tﬁ (implement interfaces)
T, - T; T, - Tg T, T,

- o

Component 1 Component 2 Component 3

« Overhead due to cache misses depends on not only the interference
between tasks but also the interference between VCPUs and between
VCPUs and tasks

Penn 24

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Example: VCPU preemption

[ core; core, core; corey J

@ core,  core,
l///////’ T "ll"’
(1,1) | (8,3) (L,1) | (53) (6,4)

Bandwidth-1 VCPUs 1

are pinned to cores | core, core,

VCPU, VCPU, VCPU, VCPU,|  VCPU, VCPU, | VCPU; |

/,___i____\\ /,___i____\\ /,___1____\\ (1,1)  (1,1)

Ty T3 T, = Tg T, Tg
NN /X J
core, . |
Component 1 Component 2 Component 3 l 1 1

v

T,=(8,4) core, , , N
I | | e
T,=(6,2) 0 1 2 3 4 5 6 7 8
T,=(10,1.5) t '
VCPU,  vcpu,
VCPU,
Penn

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 25



Example: VCPU preemption

(1,1) | (8,3)
VCPU, VCPU,

e

VCPU, is preempted (lowest prio.)

core,
o 1 2

f f

VCPU,  ycpy,
VCPU,

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

v

v

26



Example: VCPU preemption

(1,1) (8,3)
VCPU, VCPU,

S

v

36

0O 1 2 3 5 6 7 8
1 2

Component 1 - 0 34 > 6 ;
--------- core, ! ! ! - 1 1 —>

_ I T T T ] | ] =
T,=(8,4) 0 1 2 3 4 5 6 7 8
T,=(6,2)

T, =(10,1.5)
Penn

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

27



Example: VCPU preemption

(1,1) (8,3)
VCPU, VCPU,

j@

T, = (8,4)
T,=(6,2)
T, = (10,1.5)

Penn
Engineering

I---------

VCPU, is preempted and becomes unavailable
—> T, migrates to VCPU, (core 1) and preempts
the lower-priority task T,

T, experiences migration overhead
due to VCPU preemption

!

VCPU, Corel,ﬁ, ,

v

3 4 5 6 7 8
s
| 1 1 1 [

] 3 4 5 6 7 8

]

]

28

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Example: VCPU preemption

T, finishes = T, resumes

(1,1) (8,3)
VCPU, VCPU,

T, experiences preemption overhead
due to VCPU preemption

v

I N N N S S N S S S B B e e
<
(@)
o
C
[

v

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

v

29



Approach: Overhead-aware analysis

 |ncorporate platform overhead into components’
iInterfaces and schedulability test

* Inflatable overhead

— Examples: schedule function, context switch, tick, cache
miss due to intra-component task preemption/migration

— Accounted by inflating each task's WCET

 Non-inflatable overhead

— Examples: release ISR delay, cache-related overhead
due to VCPU preemption or completion

— Expose the combined overhead experienced by a
component on its interface

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

30



Release ISR overhead accounting

[RTAS’13]
* Approach: Model overhead caused by ISRs

— Using a compositional scheduling analogy

. . R
— ISRs: higher-priority intra-component
— Workload: lower-priority component

T
— Scheduled under Fixed Priority Risr d

VR’
. TP release o
Intuition: | oy ‘ ‘ W I

— The effective resource given to the tasks higher-priority  lower-priority

is the remaining resource after processing
the higher-priority release ISRs component

Penn 31

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Overhead-aware comp. analysis

* Primitive component transformation
— Step #1: Add a higher-priority release ISRs component
— Step #2: Inflate the WCETs of tasks with inflatable overhead

higher-priority } lower-priority higher-priority } lower-priority

4 N\ 4 N\ [ I a N\ [ )

H1
@ FCFS EDF #2 FCFS EDF

||‘ Q ||» Q

T, - T, ISR, --- ISR T, - T SR.. - ISR T T

U Y, . J ") N ")

C Release ISRs C Release ISRs inflated C’
Penn

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 32



Overhead-aware comp. analysis

* Primitive component transformation
* |Interface abstraction

— Abstract each component into an interface

higher-priority } lower-priority

(- )

Zisr

N/

Release ISRs

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

[ )

T

w
inflated C’

33



Overhead-aware comp. analysis

* Primitive component transformation
* |Interface abstraction

— Abstract each component into an interface

— Overhead-aware interface of C: (Zisr, Zcr )
4 N [ )
Lisr Lo
. AN

\\\
S~

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

34




Overhead-aware comp. analysis

* Primitive component transformation
* Interface abstraction

- Interface composition s .
E <Z|SR1,IC/1> (Tisry- L1 )
e N D
AN J /
\\\ ,;

e e  ————————————————— —— — — .

Composite component C
Penn 35

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Overhead-aware compositional
analysis on multi-core

« Cache-aware: Tomorrow’s talk!

* Open questions
— Complex cache hierarchy with shared cache

— Improvement of schedulability analysis under
multicore scheduling (e.g., global EDF)

— Global optimal interfaces
— Cache control to reduce interference

Penn
Engineering © 2013 L inh T.X. Phan — Towards a Safe Compos itional Scheduling Theory for CPS

36



Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces

 Conclusion

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

37



Control application A Control application B Non-control apps

—» Sensor —» Controller = Actuator —» — Sensor —» Controller = Actuator —»

end-to-end deadline d, end-to-end deadline dg

~ N N
@ O
ECU1 BUS ECU2 ECU2 BUS ECU1 ECUL ECU2

_________________________

to other subsystems

Scenario: Automotive applications

Penn 38

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



end-to-end deadline d, end-to-end deadline dg

a—0—0 u—Q—

ECU1 BUS ECU2 ECU2 BUS ECU1 ECU1 ECU2
ECU1 BUS
high-prioritVOW'Pf iority Non-preemptive

ke FP

Scenario: Automotive applications

Penn 39

Engineering 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Existing compositional theory

« Assume all tasks are independent
* Assume the deadline of each task is given
» Result:

Ca n n Ot be d i re Ctl y a p p I i ed ! high-priorityow-priority

Penn.
Engineering

ECU1

BUS

Non-preemptive

FP

g0

end-to-end deadline d, end-to-end deadline d,

high-priority

low-priority

ECU2

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

40



Challenge #1: Deadline correlation

Larger deadline for A, mmp Smaller C1’s interface bandwidth

i Smaller ECU1’s frequency
Smaller deadline for A, ECUL BUS
high-priorityow-priority Non-preemptive

Larger C2’s interface bandwidth - PP

Larger ECUZ2’s frequency

high-priorityow-priority
50—
end-to-end deadline d, end-to-end deadline d,
Penn 41

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Challenge #2: Cyclic dependency

Interface of C1? - Input data of B,

Resource supply to C1 Output data of B,

‘ ECU1 BUS
t high-priority

low-priority

Non-preemptive

Output data of A; Resource supply to C2 - Fp

g L

Input data of A, ‘ Interface of C2

o4 g0

end-to-end deadline d, end-to-end deadline d,

Penn
Engineering

© 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Approach: Deadline decomposition

- Advantages: Existing compositional theory can be used
— Existing deadline decomposition methods need to be extended!

« What is a meaningful notion of interface optimality?
— ldea: use a partial order of resource use

* How to capture interactions between |/O composition via data
dependence and hierarchical composition via scheduling?

— ldea: combine assume/guarantee interfaces with
compositional schedulability analysis

« How to tackle complexity due to data dependence?
— ldea: transform arrival patterns of input/output data to restricted
forms (e.g., periodic) while preserving end-to-end timing properties

— Approach: adapt synchronization protocols and/or shaping
techniques

Penn 43

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Approach: Parametric interfaces

 Basic idea

— Interface: a function of variables representing unknown
tasks’ parameters (e.g., local deadlines)

— Symbolic computation of interfaces

— Concrete interfaces are realized at the top level based on
end-to-end timing constraints

« Advantage: accuracy!

« Challenge: the size of composed interface grows
with more composition steps

— ldea: refine intermediate interfaces based on safe
approximations of the functions

Penn 44

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level models
— Safety-aware interfaces

 Conclusion

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

45



The modeling gap

* High-level models of computation
— Ex: timed automata, I/O automata, process algebra

— Focus on high-level specifications of timed interactions,
communications, synchronization

— Ignore platform aspects, e.g., communication/scheduling
delay

* Real-time task/resource models
— EXx: periodic, concurrent task models, Real-Time Calculus

— Focus on implementation-level information, e.g.,
execution time, deadline, resource sharing semantics

— Do not consider high-level semantics, e.g.,
synchronization, time-dependent behavior

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 46



Example: Infusion pump

Istencearm! - Abstract model
. N N — captures the software behavior
Idle > arm
LevelTwoAl ? I
_ bt independently of the target platform
PP BolusFinish? — makes implicit assumptions, e.g.,
/ BolusReq? v / BOIUSPrOCT’i@i « synchronous communication is instantaneous
\ [Bolusstartt\ ¥ A4S - processing takes zero time
N L. |_fRaisealarm!
B \\ vl Patient BolusReq!
LevelTwoAlarm? (sender) A g
Infusion /RaiseAlarm!
x<10

(partial) timed automation model
of infusion pump software

« Platform and task models

— ignores time-dependent behavior
* e.g., alarm raised after 10 time units of

infusion

Penn

Infusion pump BolusReq? :
(receiver) Idle rlnkfusmn
p
f

W 8

< /", \L

Bolus-Request
button

LifeCare PCA

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 47



Example: Infusion pump

Istencenirm! » Abstract model
" /\ . — captures the software behavior
e o™ independently of the target platform
U [ BolusFinish? / / — makes implicit assumptions, e.g.,
7~ ) /BolusProcessed' v e A e e Dt e e

,f—\

' The implemented system is unsafe, even if
« system properties are verified at the high-level model
 the system is schedulable at the platform level

 Platform and task models

— ignores time-dependent behavior

* e.g., alarm raised after 10 time units of
. . Bolus-Request
infusion button

ifeCare PCA
Penn 48

Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS



Bridging the gap

« Several existing approaches can serve as basis, e.g.,

— Adding platform aspects to high-level models

* e.g., new timed-automata semantics (almost ASAP, time-triggered,
sampling-based, probabilistic, etc.)

— Combining scheduling with high-level models
* e.g., TIMES tool, resource-based process algebra

— Automata- and actor-oriented scheduling interfaces

* However, existing work is expensive in timing analysis and
assumes very simplistic platforms
— Need more efficient approaches!

* Idea: use a glue-layer that connects both classes of models
— Captures assumptions high-level models make about the platform

— Can be used to mechanically verify that a given platform satisfies the
assumptions

— Our very initial work: RSP’12, CASES’13

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS 49



Outline

* |ntroduction

- Challenges
— Platform overhead
— Data-dependent components
— Scheduling theory vs. high-level formal models
— Safety-aware interfaces
— Clock synchronization
— Analyzing state-based systems

 Conclusion

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

50



Conclusion

» Cyber-physical systems are increasingly complex

— Need accurate and scalable analysis and design

« Compositional approach is an effective method
— Can handle complexity
— Can help optimize resources

* Many interesting open challenges remain

— This talk: some important challenges towards a safe
compositional scheduling and timing analysis

— Research opportunities for you!!

linhphan@cis.upenn.edu

Penn
Engineering © 2013 Linh T.X. Phan — Towards a Safe Compositional Scheduling Theory for CPS

51



